OFFSET
1,1
COMMENTS
Linear recurrence and empirical g.f. confirmed with more terms. - Ray Chandler, Mar 07 2024
LINKS
Ray Chandler, Table of n, a(n) for n = 1..599
Index entries for linear recurrences with constant coefficients, signature (132, -6594, 157376, -1866219, 10372992, -22605346, 11987460, -245025).
FORMULA
a(n)=(1/(3n))*(F(8n-4)+2*L(4n-2)*5^(n-1)+2*F(2n-1)*3^(2n-1)+U(n)) where L=Lucas numbers and U(n) satisfies the order 2 recursion : U(1)=2, U(2)=24, U(n)=23U(n-1)-121U(n-2).
Empirical g.f.: x*(48015*x^7 +9278012*x^6 -12039433*x^5 +3970491*x^4 -510573*x^3 +29407*x^2 -756*x +7) / ((x^2 -47*x +1)*(25*x^2 -35*x +1)*(81*x^2 -27*x +1)*(121*x^2 -23*x +1)). - Colin Barker, Jun 28 2013
PROG
(PARI) a(n)=(1/3/n)*sum(k=1, n, fibonacci(8*k)*bernfrac(2*n-2*k)*binomial(2*n, 2*k))
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Nov 29 2006
STATUS
approved