login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A124126 a(n)=(1/(3n))*sum(k=1,n,F(8k)*B(2n-2k)*binomial(2n,2k)) where F=Fibonacci numbers and B=Bernoulli numbers. 0
7, 168, 5425, 199367, 7890120, 327681361, 14071534535, 618924449640, 27702229113265, 1255905441590279, 57477374413516680, 2648841480448502353, 122698149590393354375, 5704992303566275023912, 265994788806640480586545 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..15.

FORMULA

a(n)=(1/(3n))*(F(8n-4)+2*L(4n-2)*5^(n-1)+2*F(2n-1)*3^(2n-1)+U(n)) where L=Lucas numbers and U(n) satisfies the order 2 recursion : U(1)=2, U(2)=24, U(n)=23U(n-1)-121U(n-2).

Empirical g.f.: x*(48015*x^7 +9278012*x^6 -12039433*x^5 +3970491*x^4 -510573*x^3 +29407*x^2 -756*x +7) / ((x^2 -47*x +1)*(25*x^2 -35*x +1)*(81*x^2 -27*x +1)*(121*x^2 -23*x +1)). - Colin Barker, Jun 28 2013

PROG

(PARI) a(n)=(1/3/n)*sum(k=1, n, fibonacci(8*k)*bernfrac(2*n-2*k)*binomial(2*n, 2*k))

CROSSREFS

Cf. A111262.

Sequence in context: A009807 A220991 A165388 * A086373 A162131 A258299

Adjacent sequences:  A124123 A124124 A124125 * A124127 A124128 A124129

KEYWORD

nonn

AUTHOR

Benoit Cloitre, Nov 29 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 10:53 EST 2021. Contains 349440 sequences. (Running on oeis4.)