login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356260
Lower twin primes p such that (p^2 + (p+2)^2)/10 is prime.
1
11, 41, 101, 107, 197, 311, 461, 521, 827, 1061, 1277, 1451, 1487, 1871, 2027, 2141, 2801, 3251, 3671, 4091, 4547, 5651, 5657, 6197, 6791, 6827, 7307, 7457, 8837, 9011, 9041, 9437, 9857, 10007, 10301, 10457, 11777, 12041, 12251, 12611, 13691, 13721, 13997, 14321, 14387, 15287, 15641, 17027, 17747
OFFSET
1,1
LINKS
EXAMPLE
a(3) = 101 is a term because 101 and 103 are primes and (101^2 + 103^2)/10 = 2081 is prime.
MAPLE
P:= select(isprime, {seq(i, i=3..10^5, 2)}):
T:=P intersect map(`-`, P, 2):
filter:= proc(t) local s; s:= (t^2 + (t+2)^2)/10; s::integer and isprime(s) end proc:
sort(convert(select(filter, T), list));
MATHEMATICA
Select[Prime[Range[2000]], And @@ PrimeQ[{# + 2, (#^2 + (# + 2)^2)/10}] &] (* Amiram Eldar, Aug 01 2022 *)
CROSSREFS
Cf. A001359.
Sequence in context: A239462 A065145 A030685 * A132208 A233434 A261538
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Jul 31 2022
STATUS
approved