login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array A(n,k) = (2*n)! [x^n] BesselI(0, 2*sqrt(x))^k read by antidiagonals.
8

%I #23 Jan 29 2023 23:01:08

%S 1,1,0,1,2,0,1,4,6,0,1,6,36,20,0,1,8,90,400,70,0,1,10,168,1860,4900,

%T 252,0,1,12,270,5120,44730,63504,924,0,1,14,396,10900,190120,1172556,

%U 853776,3432,0,1,16,546,19920,551950,7939008,32496156,11778624,12870,0

%N Square array A(n,k) = (2*n)! [x^n] BesselI(0, 2*sqrt(x))^k read by antidiagonals.

%F A(n,k) = A287316(n,k) * binomial(2*n,n).

%e Arrays start:

%e k\n| 0 1 2 3 4 5 6

%e ---|---------------------------------------------------------

%e k=0| 1, 0, 0, 0, 0, 0, 0, ... A000007

%e k=1| 1, 2, 6, 20, 70, 252, 924, ... A000984

%e k=2| 1, 4, 36, 400, 4900, 63504, 853776, ... A002894

%e k=3| 1, 6, 90, 1860, 44730, 1172556, 32496156, ... A002896

%e k=4| 1, 8, 168, 5120, 190120, 7939008, 357713664, ... A039699

%e k=5| 1, 10, 270, 10900, 551950, 32232060, 2070891900, ... A287317

%e k=6| 1, 12, 396, 19920, 1281420, 96807312, 8175770064, ... A356258

%e k=7| 1, 14, 546, 32900, 2570050, 238935564, 25142196156, ...

%e k=8| 1, 16, 720, 50560, 4649680, 514031616, 64941883776, ...

%e k=9| 1, 18, 918, 73620, 7792470, 999283068, 147563170524, ...

%p A287318_row := proc(k, len) local b, ser;

%p b := k -> BesselI(0, 2*sqrt(x))^k: ser := series(b(k), x, len);

%p seq((2*i)!*coeff(ser,x,i), i=0..len-1) end:

%p for k from 0 to 6 do A287318_row(k, 9) od;

%t Table[Table[SeriesCoefficient[BesselI[0, 2 Sqrt[x]]^k, {x, 0, n}] (2 n)!, {n, 0, 6}], {k, 0, 6}]

%Y Rows: A000007 (k=0), A000984 (k=1), A002894 (k=2), A002896 (k=3), A039699 (k=4), A287317 (k=5), A356258 (k=6).

%Y Columns: A005843 (n=1), A152746 (n=2), 20*A169711 (n=3), 70*A169712 (n=4), 252*A169713 (n=5).

%Y Main diagonal gives A303503.

%Y Cf. A287316.

%K nonn,tabl

%O 0,5

%A _Peter Luschny_, May 23 2017