OFFSET
1,2
FORMULA
G.f. A = A(x) satisfies
(1) 1 = (1 - A)/(1 - x^2*(1 - A)^2) + x*(1 + A)^2/(1 - x^2*(1 + A)^2).
(2) A = (1 + A)^2*x + ((1 + A)^3 - 4*A)*x^2 - (1 - A^2)^2*x^3 - (1 - A^2)^2*x^4.
(3) 0 = x^3*(1+x)*A^4 - x^2*A^3 - (2*x^4 + 2*x^3 + 3*x^2 + x)*A^2 + (1-x)^2*A - x*(1-x)*(1+x)^2.
EXAMPLE
G.f.: A(x) = x + 3*x^2 + 5*x^3 + 15*x^4 + 65*x^5 + 255*x^6 + 961*x^7 + 3759*x^8 + 15233*x^9 + 62655*x^10 + 260097*x^11 + 1090623*x^12 + ...
such that
1 = (1 - A(x)) + x*(1 + A(x))^2 + x^2*(1 - A(x))^3 + x^3*(1 + A(x))^4 + x^4*(1 - A(x))^5 + x^5*(1 + A(x))^6 + x^6*(1 - A(x))^7 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = polcoeff( sum(m=0, #A, x^m * (1 - (-1)^m*x*Ser(A))^(m+1) ), #A) ); A[n]}
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 09 2019
STATUS
approved