login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000110 / A014182: (A154107 convolved with A014182 = Bell numbers).
3

%I #9 Jul 26 2021 08:28:55

%S 1,1,3,5,15,61,207,881,4491,21493,117543,710021,4266279,28107745,

%T 196120515,1397747525,10648637151,84304440685,688868927151,

%U 5913133211249,52348170504555,479326416322933,4557380168574135,44560107679838549,449806788855058407,4680686977970550721

%N A000110 / A014182: (A154107 convolved with A014182 = Bell numbers).

%C A000110 / A014182 = (the eigensequence of Pascal's triangle) /

%C (eigensequence of the inverse of Pascal's triangle).

%C A014182 = expansion of exp(1-x-exp(-x)).

%F A000110 / A014182 = (1, 1, 2, 5, 15, 52, 203,...) / (1, 0, -1, 1, 2, -9, 9, 50,...).

%e A000110 = 52 = (1, 1, 3, 5, 15, 61) convolved with (1, 0, -1, 1, 2, -9)

%e = (61 - 5 + 3 + 2 - 9)

%t nmax = 30; Table[a[j]/.SolveAlways[Table[Sum[a[k]*Sum[(-1)^(n-k-m)*StirlingS2[n-k+1, m+1], {m, 0, n-k}], {k, 0, n}]==BellB[n], {n, 0, nmax}], a][[1]], {j, 0, nmax}] (* _Vaclav Kotesovec_, Jul 26 2021 *)

%Y Cf. A000110, A014182.

%K nonn

%O 0,3

%A _Gary W. Adamson_, Jan 04 2009

%E a(12) corrected and more terms added from _Vaclav Kotesovec_, Jul 26 2021