login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338300
Primes p of the form (q^2+q+1)/3 where q is prime and (p^2+p+1)/3 is prime.
1
19, 127, 3169, 24571, 698419, 863497, 3348577, 5684257, 6156169, 7174987, 7646437, 10790137, 16293691, 18637669, 19271071, 28210267, 30384919, 33156901, 36760501, 45782227, 47533141, 58887991, 62503981, 88210519, 92224441, 100450747, 113559769, 129356767, 138577237, 156233617, 159017041
OFFSET
1,1
LINKS
EXAMPLE
a(3) = 3169 is a term because 3169 = (97^2+97+1)/3 and (3169^2+3169+1)/3 = 3348577, and 97, 3169 and 3348577 are all prime.
MAPLE
A:= select(t -> isprime(t) and isprime((t^2+t+1)/3), [seq(i, i=1..30000, 6)]):
B:= map(t -> (t^2+t+1)/3, A):
select(t -> isprime((t^2+t+1)/3), B);
CROSSREFS
Intersection of A240971 and A338299.
Sequence in context: A078851 A202125 A169727 * A177459 A142649 A020867
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Oct 21 2020
STATUS
approved