login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240971
Primes p such that (p^2 + p + 1)/3 is prime.
4
7, 13, 19, 31, 43, 73, 97, 103, 127, 157, 199, 223, 241, 271, 409, 421, 661, 673, 727, 859, 883, 937, 1021, 1039, 1051, 1063, 1093, 1447, 1483, 1609, 1657, 1669, 1723, 1753, 1861, 1879, 1993, 2029, 2203, 2437, 2539, 2677, 2719, 2803, 2833, 2953, 3079, 3121
OFFSET
1,1
COMMENTS
Under Schinzel's hypothesis, there are infinitely many primes of this form.
p must be of form 6k+1 to give an integer. A053182 lists when p^2 + p + 1 is prime. - Jens Kruse Andersen, Aug 06 2014
LINKS
Eric Weisstein's World of Mathematics, Schinzel's Hypothesis.
MAPLE
select(n -> isprime(n) and isprime((n^2 + n + 1)/3), [seq(6*k+1, k=1..1000)]); # Robert Israel, Aug 05 2014
MATHEMATICA
Select[Prime[Range[500]], PrimeQ[(#^2 + # + 1)/3] &]
PROG
(Magma) [p: p in PrimesInInterval(3, 3500)| IsPrime((p^2+p+1) div 3)];
(PARI) forprime(p=1, 10^4, s=(p^2+p+1)/3; if(floor(s)==s, if(isprime(s), print1(p, ", ")))) \\ Derek Orr, Aug 05 2014
CROSSREFS
Cf. A053182.
Sequence in context: A173176 A216550 A267803 * A023255 A373584 A122482
KEYWORD
nonn
AUTHOR
Vincenzo Librandi, Aug 05 2014
STATUS
approved