The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A240971 Primes p such that (p^2 + p + 1)/3 is prime. 4
 7, 13, 19, 31, 43, 73, 97, 103, 127, 157, 199, 223, 241, 271, 409, 421, 661, 673, 727, 859, 883, 937, 1021, 1039, 1051, 1063, 1093, 1447, 1483, 1609, 1657, 1669, 1723, 1753, 1861, 1879, 1993, 2029, 2203, 2437, 2539, 2677, 2719, 2803, 2833, 2953, 3079, 3121 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Under Schinzel's hypothesis, there are infinitely many primes of this form. p must be of form 6k+1 to give an integer. A053182 lists when p^2 + p + 1 is prime. - Jens Kruse Andersen, Aug 06 2014 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..4900 Eric Weisstein's World of Mathematics, Schinzel's Hypothesis. MAPLE select(n -> isprime(n) and isprime((n^2 + n + 1)/3), [seq(6*k+1, k=1..1000)]); # Robert Israel, Aug 05 2014 MATHEMATICA Select[Prime[Range[500]], PrimeQ[(#^2 + # + 1)/3] &] PROG (Magma) [p: p in PrimesInInterval(3, 3500)| IsPrime((p^2+p+1) div 3)]; (PARI) forprime(p=1, 10^4, s=(p^2+p+1)/3; if(floor(s)==s, if(isprime(s), print1(p, ", ")))) \\ Derek Orr, Aug 05 2014 CROSSREFS Cf. A053182. Sequence in context: A173176 A216550 A267803 * A023255 A122482 A265629 Adjacent sequences: A240968 A240969 A240970 * A240972 A240973 A240974 KEYWORD nonn AUTHOR Vincenzo Librandi, Aug 05 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 01:30 EST 2023. Contains 367452 sequences. (Running on oeis4.)