login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173176
Greater twin primes in A172240.
4
7, 13, 19, 31, 43, 61, 73, 103, 109, 139, 151, 181, 193, 199, 229, 241, 271, 283, 313, 349, 421, 433, 463, 523, 571, 601, 619, 643, 661, 811, 823, 829, 859, 883, 1021, 1033, 1051, 1063, 1093, 1153, 1231, 1279, 1291, 1303, 1321, 1429, 1453, 1483, 1489, 1609, 1621, 1669, 1699, 1723, 1789, 1873, 1879, 1933, 1951, 1999
OFFSET
1,1
COMMENTS
For a(n) > 5, first difference of the sequence is divisible by 6. (Conjectured or proved?)
Also for a(n)>5, a(n)-1 is divisible by 6, if a(n)-2 is prime p such that p+1 is divisible by 6.
FORMULA
A172240 INTERSECT A006512.
MAPLE
isA006512 := proc(p) isprime(p) and isprime(p-2) ; end proc:
isA000430 := proc(p) if isprime(p) then true; else if issqr(p) then isprime(sqrt(p)) ; else false; end if; end if; end proc:
isA181602 := proc(p) if isprime(p) then if numtheory[bigomega](p-1) =2 and isA000430(p+2) then true; else false; end if; else false; end if ; end proc:
isA181669 := proc(p) isA181602(p) and (p mod 6)= 5 ; end proc:
isA172240 := proc(n) isprime(n) and not isA181669(n) ; end proc:
isA173176 := proc(n) isA172240(n) and isA006512(n) ; end proc:
for n from 2 to 2000 do if isA173176(n) then printf("%d, ", n) ; end if; end do:
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Giovanni Teofilatto, Nov 22 2010
EXTENSIONS
Corrected by R. J. Mathar, Dec 01 2010
STATUS
approved