login
A173176
Greater twin primes in A172240.
4
7, 13, 19, 31, 43, 61, 73, 103, 109, 139, 151, 181, 193, 199, 229, 241, 271, 283, 313, 349, 421, 433, 463, 523, 571, 601, 619, 643, 661, 811, 823, 829, 859, 883, 1021, 1033, 1051, 1063, 1093, 1153, 1231, 1279, 1291, 1303, 1321, 1429, 1453, 1483, 1489, 1609, 1621, 1669, 1699, 1723, 1789, 1873, 1879, 1933, 1951, 1999
OFFSET
1,1
COMMENTS
For a(n) > 5, first difference of the sequence is divisible by 6. (Conjectured or proved?)
Also for a(n)>5, a(n)-1 is divisible by 6, if a(n)-2 is prime p such that p+1 is divisible by 6.
FORMULA
A172240 INTERSECT A006512.
MAPLE
isA006512 := proc(p) isprime(p) and isprime(p-2) ; end proc:
isA000430 := proc(p) if isprime(p) then true; else if issqr(p) then isprime(sqrt(p)) ; else false; end if; end if; end proc:
isA181602 := proc(p) if isprime(p) then if numtheory[bigomega](p-1) =2 and isA000430(p+2) then true; else false; end if; else false; end if ; end proc:
isA181669 := proc(p) isA181602(p) and (p mod 6)= 5 ; end proc:
isA172240 := proc(n) isprime(n) and not isA181669(n) ; end proc:
isA173176 := proc(n) isA172240(n) and isA006512(n) ; end proc:
for n from 2 to 2000 do if isA173176(n) then printf("%d, ", n) ; end if; end do:
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Giovanni Teofilatto, Nov 22 2010
EXTENSIONS
Corrected by R. J. Mathar, Dec 01 2010
STATUS
approved