OFFSET
0,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..175
Wikipedia, Chebyshev polynomials.
FORMULA
From Seiichi Manyama, Jan 02 2019: (Start)
a(n) = A322699(n,2*n).
a(n) = (T_{2*n}(2*n+1) - 1)/2 where T_{n}(x) is a Chebyshev polynomial of the first kind.
a(n) = 1/2 * (-1 + Sum_{k=0..2*n} binomial(4*n,2*k)*(n+1)^(2*n-k)*n^k). (End)
a(n) ~ exp(1) * 2^(4*n - 2) * n^(2*n). - Vaclav Kotesovec, Jan 02 2019
MAPLE
A173175 := proc(n) sinh(2*n*arcsinh(sqrt(n))) ; %^2 ; expand(%); simplify(%) ; end proc: # R. J. Mathar, Feb 26 2011
MATHEMATICA
Table[Round[N[Sinh[(2 n) ArcSinh[Sqrt[n]]]^2, 100]], {n, 0, 20}]
PROG
(PARI) {a(n) = (polchebyshev(2*n, 1, 2*n+1)-1)/2} \\ Seiichi Manyama, Jan 02 2019
(PARI) {a(n) = 1/2*(-1+sum(k=0, 2*n, binomial(4*n, 2*k)*(n+1)^(2*n-k)*n^k))} \\ Seiichi Manyama, Jan 02 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Feb 11 2010
EXTENSIONS
a(11)-a(12) from Seiichi Manyama, Jan 02 2019
STATUS
approved