OFFSET
0,3
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..193
Wikipedia, Chebyshev polynomials.
FORMULA
a(n) = (1/2)*((n+sqrt(n^2-1))^(2*n) + (n-sqrt(n^2-1))^(2*n)). - Artur Jasinski, Feb 14 2010, corrected by Vaclav Kotesovec, Apr 05 2016
a(n) = Sum_{k=0..n} binomial(2*n,2*k)*(n^2-1)^(n-k)*n^(2*k). - Seiichi Manyama, Dec 27 2018
a(n) = T_{2n}(n) where T_{2n} is a Chebyshev polynomial of the first kind. - Robert Israel, Dec 27 2018
a(n) = T_{n}(2*n^2-1) where T_{n}(x) is a Chebyshev polynomial of the first kind. - Seiichi Manyama, Dec 29 2018
MAPLE
seq(orthopoly[T](2*n, n), n=0..50); # Robert Israel, Dec 27 2018
MATHEMATICA
Table[Round[Cosh[2 n ArcCosh[n]]], {n, 0, 20}] (* Artur Jasinski, Feb 10 2010 *)
Round[Table[1/2 (x - Sqrt[ -1 + x^2])^(2 x) + 1/2 (x + Sqrt[ -1 + x^2])^(2 x), {x, 0, 10}]] (* Artur Jasinski, Feb 14 2010 *)
Table[ChebyshevT[2*n, n], {n, 0, 15}] (* Vaclav Kotesovec, Nov 07 2021 *)
PROG
(PARI) {a(n) = sum(k=0, n, binomial(2*n, 2*k)*(n^2-1)^(n-k)*n^(2*k))} \\ Seiichi Manyama, Dec 27 2018
(PARI) {a(n) = polchebyshev(2*n, 1, n)} \\ Seiichi Manyama, Dec 28 2018
(PARI) {a(n) = polchebyshev(n, 1, 2*n^2-1)} \\ Seiichi Manyama, Dec 29 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Feb 10 2010
STATUS
approved