login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173129
a(n) = cosh(2 * n * arccosh(n)).
16
1, 1, 97, 19601, 7380481, 4517251249, 4097989415521, 5170128475599457, 8661355881006882817, 18605234632923999244961, 49862414878754347585980001, 163104845048002042971670685041, 639582975902942936737758325440001
OFFSET
0,3
FORMULA
a(n) = (1/2)*((n+sqrt(n^2-1))^(2*n) + (n-sqrt(n^2-1))^(2*n)). - Artur Jasinski, Feb 14 2010, corrected by Vaclav Kotesovec, Apr 05 2016
a(n) = Sum_{k=0..n} binomial(2*n,2*k)*(n^2-1)^(n-k)*n^(2*k). - Seiichi Manyama, Dec 27 2018
a(n) = T_{2n}(n) where T_{2n} is a Chebyshev polynomial of the first kind. - Robert Israel, Dec 27 2018
a(n) = T_{n}(2*n^2-1) where T_{n}(x) is a Chebyshev polynomial of the first kind. - Seiichi Manyama, Dec 29 2018
MAPLE
seq(orthopoly[T](2*n, n), n=0..50); # Robert Israel, Dec 27 2018
MATHEMATICA
Table[Round[Cosh[2 n ArcCosh[n]]], {n, 0, 20}] (* Artur Jasinski, Feb 10 2010 *)
Round[Table[1/2 (x - Sqrt[ -1 + x^2])^(2 x) + 1/2 (x + Sqrt[ -1 + x^2])^(2 x), {x, 0, 10}]] (* Artur Jasinski, Feb 14 2010 *)
Table[ChebyshevT[2*n, n], {n, 0, 15}] (* Vaclav Kotesovec, Nov 07 2021 *)
PROG
(PARI) {a(n) = sum(k=0, n, binomial(2*n, 2*k)*(n^2-1)^(n-k)*n^(2*k))} \\ Seiichi Manyama, Dec 27 2018
(PARI) {a(n) = polchebyshev(2*n, 1, n)} \\ Seiichi Manyama, Dec 28 2018
(PARI) {a(n) = polchebyshev(n, 1, 2*n^2-1)} \\ Seiichi Manyama, Dec 29 2018
KEYWORD
nonn
AUTHOR
Artur Jasinski, Feb 10 2010
STATUS
approved