login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A173148 a(n) = cos(2*n*arccos(sqrt(n))). 9
1, 1, 17, 485, 18817, 930249, 55989361, 3974443213, 325142092801, 30122754096401, 3117419602578001, 356452534779818421, 44627167107085622401, 6071840759403431812825, 892064955046043465408177, 140751338790698080509966749, 23737154316161495960243527681 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The Chebyshev polynomial T_n is defined by cos(nx) = T_n(cos(x)).  So T_2n(cos(x)) = cos(2nx) = cos^2(nx) - 1 = (T_n(x))^2 - 1 consists of only even powers of x.  As a result, a(n) = T_2n(sqrt(n)) is an integer. - Michael B. Porter, Jan 01 2019

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..321

Wikipedia, Chebyshev polynomials.

Index entries for sequences related to Chebyshev polynomials.

FORMULA

a(n) ~ exp(-1/2) * 2^(2*n-1) * n^n. - Vaclav Kotesovec, Apr 05 2016

a(n) = Sum_{k=0..n} binomial(2*n,2*k)*(n-1)^(n-k)*n^k. - Seiichi Manyama, Dec 27 2018

a(n) = cosh(2*n*arccosh(sqrt(n))). - Seiichi Manyama, Dec 27 2018

a(n) = T_{2*n}(sqrt(n)) = T_{n}(2*n-1) where T_{n}(x) is a Chebyshev polynomial of the first kind. - Seiichi Manyama, Dec 29 2018

a(n) = A322790(n-1, n) for n > 0. - Seiichi Manyama, Dec 29 2018

MATHEMATICA

Table[Round[Cos[2 n ArcCos[Sqrt[n]]]], {n, 0, 30}] (* Artur Jasinski, Feb 11 2010 *)

PROG

(PARI) {a(n) = sum(k=0, n, binomial(2*n, 2*k)*(n-1)^(n-k)*n^k)} \\ Seiichi Manyama, Dec 27 2018

(PARI) {a(n) = round(cosh(2*n*acosh(sqrt(n))))} \\ Seiichi Manyama, Dec 27 2018

(PARI) {a(n) = polchebyshev(n, 1, 2*n-1)} \\ Seiichi Manyama, Dec 29 2018

(GAP) a:=List([0..20], n->Sum([0..n], k->Binomial(2*n, 2*k)*(n-1)^(n-k)*n^k));; Print(a); # Muniru A Asiru, Jan 03 2019

(MAGMA) [&+[Binomial(2*n, 2*k)*(n-1)^(n-k)*n^k: k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Jan 03 2019

CROSSREFS

Cf. A053120 (Chebyshev polynomial), A132592, A146311, A146312, A146313, A173115, A173116, A173121, A173127, A173128, A173129, A173130, A173131, A173133, A173134, A322790.

Sequence in context: A111920 A296740 A166116 * A142368 A109305 A130660

Adjacent sequences:  A173145 A173146 A173147 * A173149 A173150 A173151

KEYWORD

nonn

AUTHOR

Artur Jasinski, Feb 11 2010

EXTENSIONS

Minor edits by Vaclav Kotesovec, Apr 05 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 8 20:14 EST 2021. Contains 341953 sequences. (Running on oeis4.)