The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A173128 a(n) = cosh(2*n*arcsinh(n)). 13
 1, 3, 161, 27379, 9478657, 5517751251, 4841332221601, 5964153172084899, 9814664424981012481, 20791777842234580902499, 55106605639755476546020001, 178627672869645203363556318483, 695165908550906808156689590141441 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Robert Israel, Table of n, a(n) for n = 0..192 Wikipedia, Chebyshev polynomials. FORMULA a(n) = (1/2)*((n + sqrt(n^2 + 1))^(2*n) + (n - sqrt(n^2 + 1))^(2*n)). - Artur Jasinski, Feb 14 2010, corrected by Vaclav Kotesovec, Apr 05 2016 a(n) = Sum_{k=0..n} binomial(2*n,2*k)*(n^2+1)^(n-k)*n^(2*k). - Seiichi Manyama, Dec 27 2018 a(n) = T_{n}(2*n^2+1) where T_{n}(x) is a Chebyshev polynomial of the first kind. - Seiichi Manyama, Dec 29 2018 MAPLE seq(expand( (1/2)*((n + sqrt(n^2 + 1))^(2*n) + (n - sqrt(n^2 + 1))^(2*n))), n=0..30); # Robert Israel, Apr 05 2016 MATHEMATICA Round[Table[Cosh[2 n ArcSinh[n]], {n, 0, 20}]] (* Artur Jasinski *) Round[Table[1/2 (x - Sqrt[1 + x^2])^(2 x) + 1/2 (x + Sqrt[1 + x^2])^(2 x), {x, 0, 20}]] (* Artur Jasinski, Feb 14 2010 *) PROG (PARI) {a(n) = sum(k=0, n, binomial(2*n, 2*k)*(n^2+1)^(n-k)*n^(2*k))} \\ Seiichi Manyama, Dec 27 2018 (PARI) {a(n) = polchebyshev(n, 1, 2*n^2+1)} \\ Seiichi Manyama, Dec 29 2018 CROSSREFS Cf. A058331, A001079, A037270, A071253, A108741, A132592, A146311, A146312, A146313, A173115, A173116, A173121, A173127, A173129, A173174. Sequence in context: A302378 A303099 A302950 * A157440 A157559 A157586 Adjacent sequences:  A173125 A173126 A173127 * A173129 A173130 A173131 KEYWORD nonn AUTHOR Artur Jasinski, Feb 10 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 10:09 EDT 2022. Contains 356021 sequences. (Running on oeis4.)