login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173132
Numbers n with the property that both the sum of the even digits of n^2 and the sum of the odd digits of n^2 are squares.
1
0, 1, 2, 3, 7, 10, 20, 22, 30, 47, 67, 68, 70, 100, 115, 157, 158, 200, 202, 212, 220, 257, 283, 300, 392, 409, 470, 562, 599, 653, 670, 680, 700, 788, 832, 904, 1000, 1015, 1112, 1129, 1150, 1175, 1238, 1247, 1282, 1355, 1436, 1444, 1498, 1501, 1570, 1580, 1692
OFFSET
1,3
COMMENTS
If n is in the sequence, then so is 10*n. - Robert Israel, Dec 27 2018
LINKS
EXAMPLE
67^2=4489, 4+4+8=16=4^2, 9=3^2; 115^2=13225, 2+2=4=2^2, 1+3+5=9=3^2.
MAPLE
filter:= proc(n) local L, E, O;
L:= convert(n^2, base, 10);
E, O:= selectremove(type, L, even);
issqr(convert(E, `+`)) and issqr(convert(O, `+`))
end proc:
select(filter, [$0..2000]); # Robert Israel, Dec 27 2018
PROG
(PARI) isok(n) = {d = digits(n^2); sed = sum(i=1, #d, !(d[i]%2)*d[i]); sod = sum(i=1, #d, (d[i]%2)*d[i]); issquare(sed) && issquare(sod); } \\ Michel Marcus, Oct 15 2013
CROSSREFS
Sequence in context: A271713 A355726 A356364 * A351704 A320675 A336414
KEYWORD
base,nonn
AUTHOR
Zak Seidov, Feb 10 2010
STATUS
approved