login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306480
Numbers k such that A054404(k) is not floor(k/e - 1/(2*e) + 1/2).
0
97, 24586, 14122865, 14437880866, 23075113325617, 53123288947296842, 166496860519928411041, 681661051602157413173890, 3532450008306093939076231361, 22600996284275635202947629995722, 174979114331029936735527491233938577, 1612273088535187752419835130130200398626
OFFSET
1,1
COMMENTS
Numbers k such that the optimal threshold in the secretary problem with k candidates is not floor(k/e - 1/(2*e) + 1/2).
LINKS
J. P. Gilbert and F. Mosteller, Recognizing the Maximum of a Sequence, Journal of the American Statistical Association, Vol. 61 No. 313 (1966), 35-73.
Eric Weisstein's World of Mathematics, Sultan's Dowry Problem
FORMULA
Empirical observation: a(n) = (2*d(6k+3)+1)/2, where d(m) is the denominator of the truncated continued fraction [a_0;a_1,a_2,...,a_m] of 1/e. - Giovanni Corbelli, Jul 23 2021
EXAMPLE
A054404(97)=35 but floor(97/e - 1/(2e) + 1/2) = 36.
MATHEMATICA
P[r_, n_] := If[r == 0, 1/n, r/n (PolyGamma[0, n] - PolyGamma[0, r])]
in[n_] := (n - 1/2)/E + 1/2 - (3E - 1)/2/(2 n + 3E - 1) - 1
su[n_] := n/E - 1/2/E + 1/2
A054404[n_] := If[P[Floor[su[n]], n] >= P[Ceiling[in[n]], n], Floor[su[n]], Ceiling[in[n]]]
lista = Select[Range[25000], ! Floor[su[#]] == Ceiling[in[#]] &];
IS[n_] := If[Floor[su[n]] == Ceiling[in[n]], False, ! (A054404[n] == Floor[su[n]])]
Select[lista, IS]
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(4)-a(12) from Jon E. Schoenfield, Feb 28 2019
STATUS
approved