The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A268150 A double binomial sum involving absolute values. 3
 0, 8, 2496, 177120, 7616000, 255780000, 7410154752, 194544814464, 4760448675840, 110493063252000, 2461297261280000, 53051182041906048, 1113060644163127296, 22833886572836393600, 459594580755139200000, 9100826722891800000000, 177680489488222659379200, 3426237501864596491802400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A fast algorithm follows from Lemma 1 of Brent et al. article. LINKS Table of n, a(n) for n=0..17. Richard P. Brent, Hideyuki Ohtsuka, Judy-anne H. Osborn, Helmut Prodinger, Some binomial sums involving absolute values, arXiv:1411.1477v2 [math.CO], 2016. FORMULA a(n) = Sum_{k=-n..n} (Sum_{l=-n..n} binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k^2 - l^2)^3). Conjecture D-finite with recurrence -(4621*n-8921)*(n-1)^2*a(n) +4*(148256*n^3 -1055204*n^2 +2794799*n -2529792)*a(n-1) -64*(32443*n- 32400)*(2*n-3)*(2*n-5)*a(n-2)=0. - R. J. Mathar, Feb 27 2023 MAPLE A268150 := proc(n) add( add( binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k^2-l^2)^3, l=-n..n), k=-n..n) ; end proc: seq(A268150(n), n=0..10) ; # R. J. Mathar, Feb 27 2023 PROG (PARI) a(n) = sum(k=-n, n, sum(l=-n, n, binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k^2 - l^2)^3)); CROSSREFS Cf. A000984, A002894, A166337, A254408, A268148. Sequence in context: A302952 A151580 A173175 * A325062 A247733 A343696 Adjacent sequences: A268147 A268148 A268149 * A268151 A268152 A268153 KEYWORD easy,nonn AUTHOR Richard P. Brent, Jan 27 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 21:09 EDT 2024. Contains 373487 sequences. (Running on oeis4.)