login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268149
A double binomial sum involving absolute values.
2
0, 24, 1120, 33264, 823680, 18475600, 389398464, 7862853600, 153876579840, 2940343837200, 55138611528000, 1018383898440480, 18574619721465600, 335240928272918304, 5996573430996184960, 106438123408375281600, 1876607120325212706816, 32891715945378106711440
OFFSET
0,2
COMMENTS
A fast algorithm follows from Theorem 1 of Brent et al. article.
LINKS
Richard P. Brent, Hideyuki Ohtsuka, Judy-anne H. Osborn, Helmut Prodinger, Some binomial sums involving absolute values, arXiv:1411.1477v2 [math.CO], 2016.
FORMULA
a(n) = Sum_{k=-n..n} (Sum_{l=-n..n} binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k-l)^3).
Conjecture D-finite with recurrence (2*n-1)*(n-1)*a(n) +2*(-22*n^2+27*n-36)*a(n-1) +12*(4*n-5)*(4*n-7)*a(n-2)=0. - R. J. Mathar, Feb 27 2023
PROG
(PARI) a(n) = sum(k=-n, n, sum(l=-n, n, binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k-l)^3));
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Richard P. Brent, Jan 27 2016
STATUS
approved