login
A268151
A double binomial sum involving absolute values.
2
0, 40, 2816, 104448, 3014656, 76021760, 1761607680, 38520487936, 807453851648, 16389595201536, 324355930193920, 6289206510878720, 119908340078739456, 2254051613498933248, 41865462136036130816, 769575104325070356480, 14019525496019259228160, 253384476596474400997376
OFFSET
0,2
COMMENTS
A fast algorithm follows from Theorem 1 of Brent et al. article.
LINKS
Richard P. Brent, Hideyuki Ohtsuka, Judy-anne H. Osborn, Helmut Prodinger, Some binomial sums involving absolute values, arXiv:1411.1477v2 [math.CO], 2016.
FORMULA
a(n) = Sum_{k=-n..n} (Sum_{l=-n..n} binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k-l)^4).
From Colin Barker, Feb 11 2016: (Start)
a(n) = 2^(4*n-1)*n*(6*n-1).
a(n) = 48*a(n-1)-768*a(n-2)+4096*a(n-3) for n>2.
G.f.: 8*x*(5+112*x) / (1-16*x)^3.
(End)
MATHEMATICA
LinearRecurrence[{48, -768, 4096}, {0, 40, 2816}, 20] (* Harvey P. Dale, Apr 28 2022 *)
PROG
(PARI) a(n) = sum(k=-n, n, sum(l=-n, n, binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k-l)^4));
(PARI) concat(0, Vec(8*x*(5+112*x)/(1-16*x)^3 + O(x^20))) \\ Colin Barker, Feb 11 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Richard P. Brent, Jan 27 2016
STATUS
approved