login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A268151 A double binomial sum involving absolute values. 2
0, 40, 2816, 104448, 3014656, 76021760, 1761607680, 38520487936, 807453851648, 16389595201536, 324355930193920, 6289206510878720, 119908340078739456, 2254051613498933248, 41865462136036130816, 769575104325070356480, 14019525496019259228160, 253384476596474400997376 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A fast algorithm follows from Theorem 1 of Brent et al. article.

LINKS

Colin Barker, Table of n, a(n) for n = 0..800

Richard P. Brent, Hideyuki Ohtsuka, Judy-anne H. Osborn, Helmut Prodinger, Some binomial sums involving absolute values, arXiv:1411.1477v2 [math.CO], 2016.

Index entries for linear recurrences with constant coefficients, signature (48,-768,4096).

FORMULA

a(n) = Sum_{k=-n..n} (Sum_{l=-n..n} binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k-l)^4).

From Colin Barker, Feb 11 2016: (Start)

a(n) = 2^(4*n-1)*n*(6*n-1).

a(n) = 48*a(n-1)-768*a(n-2)+4096*a(n-3) for n>2.

G.f.: 8*x*(5+112*x) / (1-16*x)^3.

(End)

PROG

(PARI) a(n) = sum(k=-n, n, sum(l=-n, n, binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k-l)^4));

(PARI) concat(0, Vec(8*x*(5+112*x)/(1-16*x)^3 + O(x^20))) \\ Colin Barker, Feb 11 2016

CROSSREFS

Cf. A000984, A002894, A166337, A268147, A268149.

Sequence in context: A049215 A221658 A188154 * A269824 A178721 A059948

Adjacent sequences:  A268148 A268149 A268150 * A268152 A268153 A268154

KEYWORD

easy,nonn

AUTHOR

Richard P. Brent, Jan 27 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 27 19:34 EDT 2021. Contains 347694 sequences. (Running on oeis4.)