login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A268147 A double binomial sum involving absolute values. 4
0, 16, 512, 12288, 262144, 5242880, 100663296, 1879048192, 34359738368, 618475290624, 10995116277760, 193514046488576, 3377699720527872, 58546795155816448, 1008806316530991104, 17293822569102704640, 295147905179352825856, 5017514388048998039552 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A fast algorithm follows from Theorem 1 of Brent et al. article.

LINKS

Colin Barker, Table of n, a(n) for n = 0..800

Richard P. Brent, Hideyuki Ohtsuka, Judy-anne H. Osborn, Helmut Prodinger, Some binomial sums involving absolute values, arXiv:1411.1477v2 [math.CO], 2016.

Index entries for linear recurrences with constant coefficients, signature (32,-256).

FORMULA

a(n) = Sum_{k=-n..n} (Sum_{l=-n..n} binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k-l)^2).

From Colin Barker, Feb 11 2016: (Start)

a(n) = n*16^n.

a(n) = 32*a(n-1)-256*a(n-2) for n>1.

G.f.: 16*x / (1-16*x)^2.

(End)

MAPLE

a:= proc(n) option remember;

16*`if`(n<2, n, n*a(n-1)/(n-1))

end:

seq(a(n), n=0..20); # Alois P. Heinz, Jan 29 2016

MATHEMATICA

Table[n*16^n, {n, 0, 20}] (* Jean-François Alcover, Oct 24 2016 *)

LinearRecurrence[{32, -256}, {0, 16}, 20] (* Harvey P. Dale, Jul 19 2018 *)

PROG

(PARI) a(n) = sum(k=-n, n, sum(l=-n, n, binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k-l)^2));

(PARI) concat(0, Vec(16*x/(1-16*x)^2 + O(x^20))) \\ Colin Barker, Feb 11 2016

(PARI) a(n)=n*16^n \\ Charles R Greathouse IV, May 10 2016

CROSSREFS

Cf. A000984, A002894, A166337.

Sequence in context: A302744 A147641 A300801 * A303453 A303459 A301440

Adjacent sequences: A268144 A268145 A268146 * A268148 A268149 A268150

KEYWORD

easy,nonn

AUTHOR

Richard P. Brent, Jan 27 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 30 22:27 EST 2023. Contains 359947 sequences. (Running on oeis4.)