OFFSET
0,2
COMMENTS
A fast algorithm follows from Theorem 1 of Brent et al. article.
LINKS
Colin Barker, Table of n, a(n) for n = 0..800
Richard P. Brent, Hideyuki Ohtsuka, Judy-anne H. Osborn, Helmut Prodinger, Some binomial sums involving absolute values, arXiv:1411.1477v2 [math.CO], 2016.
Index entries for linear recurrences with constant coefficients, signature (32,-256).
FORMULA
a(n) = Sum_{k=-n..n} (Sum_{l=-n..n} binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k-l)^2).
From Colin Barker, Feb 11 2016: (Start)
a(n) = n*16^n.
a(n) = 32*a(n-1)-256*a(n-2) for n>1.
G.f.: 16*x / (1-16*x)^2.
(End)
MAPLE
a:= proc(n) option remember;
16*`if`(n<2, n, n*a(n-1)/(n-1))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Jan 29 2016
MATHEMATICA
Table[n*16^n, {n, 0, 20}] (* Jean-François Alcover, Oct 24 2016 *)
LinearRecurrence[{32, -256}, {0, 16}, 20] (* Harvey P. Dale, Jul 19 2018 *)
PROG
(PARI) a(n) = sum(k=-n, n, sum(l=-n, n, binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k-l)^2));
(PARI) concat(0, Vec(16*x/(1-16*x)^2 + O(x^20))) \\ Colin Barker, Feb 11 2016
(PARI) a(n)=n*16^n \\ Charles R Greathouse IV, May 10 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Richard P. Brent, Jan 27 2016
STATUS
approved