login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A double binomial sum involving absolute values.
2

%I #17 Feb 27 2023 08:21:57

%S 0,24,1120,33264,823680,18475600,389398464,7862853600,153876579840,

%T 2940343837200,55138611528000,1018383898440480,18574619721465600,

%U 335240928272918304,5996573430996184960,106438123408375281600,1876607120325212706816,32891715945378106711440

%N A double binomial sum involving absolute values.

%C A fast algorithm follows from Theorem 1 of Brent et al. article.

%H Richard P. Brent, Hideyuki Ohtsuka, Judy-anne H. Osborn, Helmut Prodinger, <a href="http://arxiv.org/abs/1411.1477">Some binomial sums involving absolute values</a>, arXiv:1411.1477v2 [math.CO], 2016.

%F a(n) = Sum_{k=-n..n} (Sum_{l=-n..n} binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k-l)^3).

%F Conjecture D-finite with recurrence (2*n-1)*(n-1)*a(n) +2*(-22*n^2+27*n-36)*a(n-1) +12*(4*n-5)*(4*n-7)*a(n-2)=0. - _R. J. Mathar_, Feb 27 2023

%o (PARI) a(n) = sum(k=-n,n, sum(l=-n,n, binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k-l)^3));

%Y Cf. A000984, A002894, A166337, A268147.

%K easy,nonn

%O 0,2

%A _Richard P. Brent_, Jan 27 2016