login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160260
Numerator of Hermite(n, 12/29).
1
1, 24, -1106, -107280, 3006156, 793927584, -6227509944, -8161777416384, -122559955912560, 106883437972961664, 4420515123955413216, -1691687063730285271296, -122388860352949901833536, 31207679045861280271833600, 3425139117578273280016104576
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Sep 26 2018: (Start)
a(n) = 29^n * Hermite(n, 12/29).
E.g.f.: exp(24*x - 841*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(24/29)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerators of 1, 24/29, -1106/841, -107280/24389, 3006156/707281,...
MATHEMATICA
Table[29^n*HermiteH[n, 12/29], {n, 0, 30}] (* G. C. Greubel, Sep 26 2018 *)
HermiteH[Range[0, 20], 12/29]//Numerator (* Harvey P. Dale, Dec 27 2019 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 12/29)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(24*x - 841*x^2))) \\ G. C. Greubel, Sep 26 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(24/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 26 2018
CROSSREFS
Cf. A009973 (denominators).
Sequence in context: A046906 A130552 A374885 * A268149 A114051 A269092
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved