login
A160261
Numerator of Hermite(n, 13/29).
1
1, 26, -1006, -113620, 2122156, 819611416, 3462564856, -8181491724016, -253487023438960, 103499490028946336, 6528273301571581216, -1571126316446016259904, -161635396853273818415936, 27509093252961272911088000, 4249556012170678409171144576
OFFSET
0,2
LINKS
DLMF Digital library of mathematical functions, Table 18.9.1 for H_n(x)
FORMULA
D-finite with recurrence a(n) -26*a(n-1) +1682*(n-1)*a(n-2)=0. [DLMF] - R. J. Mathar, Feb 16 2014
From G. C. Greubel, Jul 12 2018: (Start)
a(n) = 29^n * Hermite(n, 13/29).
E.g.f.: exp(26*x - 841*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(26/29)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerator of 1, 26/29, -1006/841, -113620/24389, 2122156/707281, 819611416/20511149,...
MAPLE
A160261 := proc(n)
orthopoly[H](n, 13/29) ;
numer(%) ;
end proc: # R. J. Mathar, Feb 16 2014
MATHEMATICA
Numerator[HermiteH[Range[0, 20], 13/29]] (* Harvey P. Dale, May 15 2012 *)
Table[29^n*HermiteH[n, 13/29], {n, 0, 30}] (* G. C. Greubel, Jul 12 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 13/29)) \\ Charles R Greathouse IV, Jan 29 2016
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(26/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 12 2018
CROSSREFS
Cf. A009973 (denominators).
Sequence in context: A263945 A335609 A241871 * A357376 A241874 A330497
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved