With the Bachet-Bézout theorem implicating Gauss Lemma and the Fundamental Theorem of Arithmetic,
for k > 1, k = 2*a + 3*b (a and b integers)
first type
A001477 = (2*A080425) + (3*A008611)
A000040 = (2*A039701) + (3*A157966)
A024893 Numbers k such that 3*k + 2 is prime
A034936 Numbers k such that 3*k + 4 is prime
OR second type
A001477 = (2*A028242) + (3*A059841)
A000040 = (2*A067076) + (3*1)
A067076 Numbers k such that 2*k + 3 is prime
k a b OR a b
-- - - - -
0 0 0 0 0
1 - - - -
2 1 0 1 0
3 0 1 0 1
4 2 0 2 0
5 1 1 1 1
6 0 2 3 0
7 2 1 2 1
8 1 2 4 0
9 0 3 3 1
10 2 2 5 0
11 1 3 4 1
12 0 4 6 0
13 2 3 5 1
14 1 4 7 0
15 0 5 6 1
...
2* 1 + 3 OR 3* 1 + 2 = 5;
2* 4 + 3 OR 3* 3 + 2 = 11;
2* 7 + 3 OR 3* 5 + 2 = 17;
2*10 + 3 OR 3* 7 + 2 = 23;
2*13 + 3 OR 3* 9 + 2 = 29;
2*19 + 3 OR 3*13 + 2 = 41;
2*22 + 3 OR 3*15 + 2 = 47;
2*25 + 3 OR 3*17 + 2 = 53;
2*28 + 3 OR 3*19 + 2 = 59.
A024893 Numbers k such that 3k+2 is prime.
A007528 Primes of the form 6k-1.
A024898 Positive integers k such that 6k-1 is prime.
1, 4, 7, 10, 13, 19, ... = (3*(4*A024898 - A024893) - 7)/2 = (A112774 - 3*A024893 - 5)/2 = A003627 - (3*A024893 - 5)/2.
|