Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jul 30 2024 14:35:54
%S 1,4,7,10,13,19,22,25,28,34,40,43,49,52,55,64,67,73,82,85,88,94,97,
%T 112,115,118,124,127,130,133,139,145,154,157,172,175,178,190,193,199,
%U 208,214,220,223,229,232,238,244,250,253,259,277,280,283,292,295,298,307,319
%N Numbers k such that 2*k+3 is a prime of the form 3*A024893(m) + 2.
%C With the Bachet-Bézout theorem implicating Gauss Lemma and the Fundamental Theorem of Arithmetic,
%C for k > 1, k = 2*a + 3*b (a and b integers)
%C first type
%C A001477 = (2*A080425) + (3*A008611)
%C A000040 = (2*A039701) + (3*A157966)
%C A024893 Numbers k such that 3*k + 2 is prime
%C A034936 Numbers k such that 3*k + 4 is prime
%C OR second type
%C A001477 = (2*A028242) + (3*A059841)
%C A000040 = (2*A067076) + (3*1)
%C A067076 Numbers k such that 2*k + 3 is prime
%C k a b OR a b
%C -- - - - -
%C 0 0 0 0 0
%C 1 - - - -
%C 2 1 0 1 0
%C 3 0 1 0 1
%C 4 2 0 2 0
%C 5 1 1 1 1
%C 6 0 2 3 0
%C 7 2 1 2 1
%C 8 1 2 4 0
%C 9 0 3 3 1
%C 10 2 2 5 0
%C 11 1 3 4 1
%C 12 0 4 6 0
%C 13 2 3 5 1
%C 14 1 4 7 0
%C 15 0 5 6 1
%C ...
%C 2* 1 + 3 OR 3* 1 + 2 = 5;
%C 2* 4 + 3 OR 3* 3 + 2 = 11;
%C 2* 7 + 3 OR 3* 5 + 2 = 17;
%C 2*10 + 3 OR 3* 7 + 2 = 23;
%C 2*13 + 3 OR 3* 9 + 2 = 29;
%C 2*19 + 3 OR 3*13 + 2 = 41;
%C 2*22 + 3 OR 3*15 + 2 = 47;
%C 2*25 + 3 OR 3*17 + 2 = 53;
%C 2*28 + 3 OR 3*19 + 2 = 59.
%C A024893 Numbers k such that 3k+2 is prime.
%C A007528 Primes of the form 6k-1.
%C A024898 Positive integers k such that 6k-1 is prime.
%C 1, 4, 7, 10, 13, 19, ... = (3*(4*A024898 - A024893) - 7)/2 = (A112774 - 3*A024893 - 5)/2 = A003627 - (3*A024893 - 5)/2.
%H Amiram Eldar, <a href="/A173178/b173178.txt">Table of n, a(n) for n = 1..10000</a>
%H Chris K. Caldwell, <a href="https://t5k.org/notes/faq/six.html">FAQ: Are all primes (past 2 and 3) of the forms 6n+1 and 6n-1?</a>, Frequently asked questions about primes.
%F a(n) = 3*A059325(n) + 1. - _Amiram Eldar_, Jul 30 2024
%t Select[Range[0, 320], PrimeQ[(p = 2*# + 3)] && Mod[p, 3] == 2 &] (* _Amiram Eldar_, Jul 30 2024 *)
%Y Cf. A067076, A024893, A007528, A024898, A059325.
%K nonn,easy,uned
%O 1,2
%A _Eric Desbiaux_, Feb 11 2010
%E Data corrected and extended by _Amiram Eldar_, Jul 30 2024