login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that (p^2 + p + 1)/3 is prime.
4

%I #20 Sep 08 2022 08:46:07

%S 7,13,19,31,43,73,97,103,127,157,199,223,241,271,409,421,661,673,727,

%T 859,883,937,1021,1039,1051,1063,1093,1447,1483,1609,1657,1669,1723,

%U 1753,1861,1879,1993,2029,2203,2437,2539,2677,2719,2803,2833,2953,3079,3121

%N Primes p such that (p^2 + p + 1)/3 is prime.

%C Under Schinzel's hypothesis, there are infinitely many primes of this form.

%C p must be of form 6k+1 to give an integer. A053182 lists when p^2 + p + 1 is prime. - _Jens Kruse Andersen_, Aug 06 2014

%H Vincenzo Librandi, <a href="/A240971/b240971.txt">Table of n, a(n) for n = 1..4900</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SchinzelsHypothesis.html">Schinzel's Hypothesis</a>.

%p select(n -> isprime(n) and isprime((n^2 + n + 1)/3), [seq(6*k+1,k=1..1000)]); # _Robert Israel_, Aug 05 2014

%t Select[Prime[Range[500]], PrimeQ[(#^2 + # + 1)/3] &]

%o (Magma) [p: p in PrimesInInterval(3,3500)| IsPrime((p^2+p+1) div 3)];

%o (PARI) forprime(p=1,10^4,s=(p^2+p+1)/3;if(floor(s)==s,if(isprime(s),print1(p,", ")))) \\ _Derek Orr_, Aug 05 2014

%Y Cf. A053182.

%K nonn

%O 1,1

%A _Vincenzo Librandi_, Aug 05 2014