%I #8 Nov 11 2019 21:49:14
%S 1,1,2,1,4,1,1,6,3,2,1,8,6,8,1,1,10,10,20,5,2,1,12,15,40,15,12,1,1,14,
%T 21,70,35,42,7,2,1,16,28,112,70,112,28,16,1,1,18,36,168,126,252,84,72,
%U 9,2,1,20,45,240,210,504,210,240,45,20,1,1,22,55,330,330,924,462,660,165
%N Triangle read by rows: T(n,k) = (3  (1)^k)*binomial(n,k)/2 (0 <= k <= n).
%e First few rows of the triangle:
%e 1;
%e 1, 2;
%e 1, 4, 1;
%e 1, 6, 3, 2;
%e 1, 8, 6, 8, 1;
%e 1, 10, 10, 20, 5, 2;
%e 1, 12, 15, 40, 15, 12, 1;
%e ...
%e Row 3 sum = 12 = (1 + 6 + 3 + 2) = A003945(3).
%p T:=(n,k)>(3(1)^k)*binomial(n,k)/2: for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
%Y Cf. A003945.
%K nonn,tabl
%O 0,3
%A _Gary W. Adamson_, Nov 10 2006
%E Edited by _N. J. A. Sloane_, Nov 24 2006
