login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A191524 Number of double rises in all left factors of Dyck paths of length n (a double rise consists of two consecutive (1,1)-steps). 2
0, 0, 1, 3, 8, 18, 42, 89, 198, 410, 890, 1822, 3896, 7924, 16772, 33973, 71378, 144186, 301242, 607346, 1263312, 2543420, 5271596, 10601978, 21909388, 44026788, 90757732, 182258364, 374917328, 752509096, 1545134792, 3099964429, 6355046378, 12745450426 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

FORMULA

a(n) = Sum_{k>=0} k*A191523(n,k).

G.f.: 2*((1-3*z^2-z^3)*q - 1 +5*z^2 +z^3 - 4*z^4)/(z*q*(1-2*z-q)^2), where q = sqrt(1-4*z^2).

a(n) ~ 2^(n-3/2)*sqrt(n)/sqrt(Pi) * (1 + sqrt(2*Pi/n)). - Vaclav Kotesovec, Mar 21 2014

EXAMPLE

a(4)=8 because in UDUD, UDUU, UUDD, UUDU, UUUD, and UUUU we have a total of 0+1+1+1+2+3=8 UUs (here U=(1,1) and D=(1,-1)).

MAPLE

q:= sqrt(1-4*z^2): g := (2*((1-3*z^2-z^3)*q-1+5*z^2+z^3-4*z^4))/(z*q*(1-2*z-q)^2): gser := series(g, z = 0, 36): seq(coeff(gser, z, n), n = 0 .. 33);

MATHEMATICA

CoefficientList[Series[(2*((1-3*x^2-x^3)*Sqrt[1-4*x^2]-1+5*x^2+x^3-4*x^4))/(x*Sqrt[1-4*x^2]*(1-2*x-Sqrt[1-4*x^2])^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *)

PROG

(PARI) z='z+O('z^50); concat([0, 0], Vec(2*((1-3*z^2-z^3)*sqrt(1-4*z^2) - 1 +5*z^2 +z^3 - 4*z^4)/(z*sqrt(1-4*z^2)*(1-2*z-sqrt(1-4*z^2))^2))) \\ G. C. Greubel, Mar 27 2017

CROSSREFS

Cf. A191523.

Sequence in context: A240135 A066425 A026679 * A026756 A341583 A216631

Adjacent sequences:  A191521 A191522 A191523 * A191525 A191526 A191527

KEYWORD

nonn

AUTHOR

Emeric Deutsch, Jun 05 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 21 06:55 EDT 2021. Contains 345358 sequences. (Running on oeis4.)