OFFSET
1,8
COMMENTS
FORMULA
G.f.: G(t,z)=(z+r+r*z)/(1-t*z*(1+r)) where r=r(t,z) is a solution of z^2*(1+r)*(1+t*r) (the Narayana function with argument z^2).
EXAMPLE
T(5,2)=4 because we have UD(U[U)U], (UU)D(UU), (U[U)U]DD, and (U[U)U]DU, where U=(1,1) and D=(1,-1) (the double rises are shown between parentheses).
Triangle starts:
1;
1, 1;
1, 1, 1;
1, 3, 1, 1;
1, 3, 4, 1, 1;
1, 6, 6, 5, 1, 1;
MAPLE
eqr := R = z^2*(1+R)*(1+t*R): r := RootOf(eqr, R): G := (z+r+r*z)/(1-t*z*(1+r)): Gser := simplify(series(G, z = 0, 17)): for n to 13 do P[n] := sort(coeff(Gser, z, n)) end do: for n to 13 do seq(coeff(P[n], t, k), k = 0 .. n-1) end do; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jun 05 2011
STATUS
approved