login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A370783
a(n) is the numerator of the sum of the reciprocals of the squarefree divisors of the powerful part of n.
2
1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 6, 1, 4, 3, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 8, 6, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 4, 3, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1, 1
OFFSET
1,4
LINKS
FORMULA
a(n) = A332880(A057521(n)).
Let f(n) = a(n)/A370784(n):
f(n) is multiplicative with f(p) = 1 and f(p^e) = 1 + 1/p for e >= 2.
f(n) = 1 if and only if n is squarefree (A005117).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} f(k) = zeta(3)/zeta(6) = 1.181564... (A157289) (Jakimczuk, 2024).
EXAMPLE
Fractions begin with: 1, 1, 1, 3/2, 1, 1, 1, 3/2, 4/3, 1, 1, 3/2, ...
MATHEMATICA
a[n_] := Numerator[Times @@ (1 + 1/Select[FactorInteger[n], Last[#] > 1 &][[;; , 1]])]; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n)); numerator(prod(i = 1, #f~, if(f[i, 2] == 1, 1, 1 + 1/f[i, 1]))); }
CROSSREFS
Cf. A005117, A057521, A157289, A295295, A332880, A370784 (denominators).
Sequence in context: A351149 A191523 A132890 * A295295 A365336 A365404
KEYWORD
nonn,easy,frac
AUTHOR
Amiram Eldar, Mar 02 2024
STATUS
approved