OFFSET
0,4
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = A191525(n,0).
G.f.: (((1+z)*sqrt(1-4*z^2)-(1-z)*(1-2*z))*1/2)/(z*(1-2*z)*(2+z^2)).
a(n) ~ 2^(n+3/2)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 21 2014
Conjecture: -2*(n+1)*(3*n-10)*a(n) +12*(n-5)*a(n-1) +(21*n^2-97*n+122)*a(n-2) +6*(n-5)*a(n-3) +4*(n-2)*(3*n-7)*a(n-4)=0. - R. J. Mathar, Jun 14 2016
EXAMPLE
a(4)=4 because the paths UUDD, UUDU, UUUD, and UUUU have no hills; here U=(1,1) and D=(1,-1) (UDUD and UDUU have 2 and 1 hills, respectively).
MAPLE
g := (((1+z)*sqrt(1-4*z^2)-(1-z)*(1-2*z))*1/2)/(z*(1-2*z)*(2+z^2)): gser := series(g, z = 0, 40): seq(coeff(gser, z, n), n = 0 .. 35);
MATHEMATICA
CoefficientList[Series[(((1+x)*Sqrt[1-4*x^2]-(1-x)*(1-2*x))*1/2)/(x*(1-2*x) *(2+x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
PROG
(PARI) z='z+O('z^50); Vec((((1+z)*sqrt(1-4*z^2)-(1-z)*(1-2*z))*1/2)/(z*(1-2*z)*(2+z^2))) \\ G. C. Greubel, Mar 27 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jun 06 2011
STATUS
approved