login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A191519 Number of dispersed Dyck paths of semilength n (i.e., Motzkin paths of length n with no (1,0)-steps at positive heights) having no UUU's (U=(1,1)). 2
1, 1, 2, 3, 6, 10, 19, 33, 62, 110, 205, 368, 683, 1235, 2286, 4153, 7674, 13986, 25813, 47150, 86949, 159077, 293176, 537014, 989267, 1813659, 3339940, 6127355, 11280954, 20706414, 38114723, 69988457, 128809594, 236602202, 435400253, 799958582, 1471961037 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n) = A191518(n,0).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

FORMULA

G.f.: 2/(1-2*x-x^2+sqrt(1-2*x^2-3*x^4)).

a(n-1)=sum(m=floor((n+1)/2)..n, ((2*m-n)*sum(j=0..m, binomial(j,n+2*j-3*m)*binomial(m,j)))/m). [Vladimir Kruchinin, Mar 09 2013]

EXAMPLE

a(6) = 19 because among the 20 (=A001405(6)) dispersed Dyck paths of length 6 only UUUDDD has a UUU (U=(1,1), D=(1,-1)).

MAPLE

g := 2/(1-2*z-z^2+sqrt(1-2*z^2-3*z^4)): gser := series(g, z = 0, 40): seq(coeff(gser, z, n), n = 0 .. 36);

# second Maple program:

a:= proc(n) option remember;

      `if`(n<7, [1, 1, 2, 3, 6, 10, 19][n+1],

      ((n+1)*a(n-1)+(3*n-3)*a(n-2)-(n-5)*a(n-3)

      +(n-11)*a(n-4)-(5*n-19)*a(n-5)-(3*n-15)*a(n-6)

      -(3*n-15)*a(n-7))/(n+1))

    end:

seq(a(n), n=0..50);  # Alois P. Heinz, Jun 02 2014

MATHEMATICA

a[n_] := Sum[((2*m-n-1)*Sum[Binomial[j, n+2*j-3*m+1]*Binomial[m, j], {j, 0, m}])/m, {m, Floor[(n+2)/2], n+1}]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 31 2015, after Vladimir Kruchinin *)

CROSSREFS

Cf. A001405, A191518.

Sequence in context: A136752 A093126 A003237 * A165920 A274160 A190501

Adjacent sequences:  A191516 A191517 A191518 * A191520 A191521 A191522

KEYWORD

nonn

AUTHOR

Emeric Deutsch, Jun 07 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 23:38 EST 2021. Contains 349558 sequences. (Running on oeis4.)