The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A191519 Number of dispersed Dyck paths of semilength n (i.e., Motzkin paths of length n with no (1,0)-steps at positive heights) having no UUU's (U=(1,1)). 2
 1, 1, 2, 3, 6, 10, 19, 33, 62, 110, 205, 368, 683, 1235, 2286, 4153, 7674, 13986, 25813, 47150, 86949, 159077, 293176, 537014, 989267, 1813659, 3339940, 6127355, 11280954, 20706414, 38114723, 69988457, 128809594, 236602202, 435400253, 799958582, 1471961037 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n) = A191518(n,0). LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 FORMULA G.f.: 2/(1-2*x-x^2+sqrt(1-2*x^2-3*x^4)). a(n-1)=sum(m=floor((n+1)/2)..n, ((2*m-n)*sum(j=0..m, binomial(j,n+2*j-3*m)*binomial(m,j)))/m). [Vladimir Kruchinin, Mar 09 2013] EXAMPLE a(6) = 19 because among the 20 (=A001405(6)) dispersed Dyck paths of length 6 only UUUDDD has a UUU (U=(1,1), D=(1,-1)). MAPLE g := 2/(1-2*z-z^2+sqrt(1-2*z^2-3*z^4)): gser := series(g, z = 0, 40): seq(coeff(gser, z, n), n = 0 .. 36); # second Maple program: a:= proc(n) option remember;       `if`(n<7, [1, 1, 2, 3, 6, 10, 19][n+1],       ((n+1)*a(n-1)+(3*n-3)*a(n-2)-(n-5)*a(n-3)       +(n-11)*a(n-4)-(5*n-19)*a(n-5)-(3*n-15)*a(n-6)       -(3*n-15)*a(n-7))/(n+1))     end: seq(a(n), n=0..50);  # Alois P. Heinz, Jun 02 2014 MATHEMATICA a[n_] := Sum[((2*m-n-1)*Sum[Binomial[j, n+2*j-3*m+1]*Binomial[m, j], {j, 0, m}])/m, {m, Floor[(n+2)/2], n+1}]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 31 2015, after Vladimir Kruchinin *) CROSSREFS Cf. A001405, A191518. Sequence in context: A136752 A093126 A003237 * A165920 A274160 A190501 Adjacent sequences:  A191516 A191517 A191518 * A191520 A191521 A191522 KEYWORD nonn AUTHOR Emeric Deutsch, Jun 07 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 23:38 EST 2021. Contains 349558 sequences. (Running on oeis4.)