OFFSET
0,4
EXAMPLE
.
n: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ...
------------------------------------------------------------------------------
A278603(n): 0, 1, 2, 1, 2, 3, 2, 1, 2, 3, 4, 5, 4, 3, 4, 5, 6, 7, 6, 5, ...
------------------------------------------------------------------------------
* * *
Count: 1 2 3 -> therefore a(14) = 3.
.
The counting of equal altitude points is also explained with this diagram.
Up to and including A278603(14) = 4, climbing from origin, we touch 3 equal altitude
.
Altitude 4 /\
touched / \...
3 times _________/\__/
reaching / \/
n = 14 /\ /
/\/ \/
/
.
An array as a histogram that shows in rows the equal altitude points on the prime mountain, stacked into columns. The prime mountain is squashed horizontally like a concertina to bring its equal altitude points close together, left-justified, and so to create a compact visual form for analysis. The number of equal altitude points, a(n), so far as n, can be read from the column headings, here in the range of n = 0, ..., 186:
.
Al-|
ti-| - a(n) -
tu-|
de | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ...
------------------------------------------------------------------------------------
. | ...
28 | 186 ...
27 | 157 185 ...
26 | 156 158 184 ...
25 | 155 159 167 179 183 ...
24 | 154 160 166 168 178 180 182 ...
23 | 149 153 161 165 169 177 181 ...
22 | 148 150 152 162 164 170 176 ...
21 | 147 151 163 171 175 ...
20 | 146 172 174 ...
19 | 145 173 ...
18 | 144 ...
17 | 143 ...
16 | 142 ...
15 | 137 141 ...
14 | 136 138 140 ...
13 | 127 135 139 ...
12 | 126 128 134 ...
11 | 125 129 133 ...
10 | 124 130 132 ...
9 | 23 67 123 131 ...
8 | 22 24 66 68 122 ...
7 | 17 21 25 65 69 73 97 121 ...
6 | 16 18 20 26 64 70 72 74 96 98 120 ...
5 | 11 15 19 27 31 47 59 63 71 75 83 95 99 103 119 ...
4 | 10 12 14 28 30 32 46 48 58 60 62 76 82 84 94 100 102 104 118 ...
3 | 5 9 13 29 33 41 45 49 57 61 77 81 85 93 101 105 109 117 ...
2 | 2 4 6 8 34 40 42 44 50 56 78 80 86 92 106 108 110 116 ...
1 | 1 3 7 35 39 43 51 55 79 87 91 107 111 115 ...
0 | 0 36 38 52 54 88 90 112 114 ...
-1 | 37 53 89 113 ...
. | ...
.
CROSSREFS
KEYWORD
nonn
AUTHOR
Tamas Sandor Nagy, Oct 23 2024
STATUS
approved