login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278603
A prime mountain: peaks and valleys beyond the origin correspond to prime abscissa (see Comments for precise definition).
3
0, 1, 2, 1, 2, 3, 2, 1, 2, 3, 4, 5, 4, 3, 4, 5, 6, 7, 6, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 4, 5, 4, 3, 2, 1, 0, -1, 0, 1, 2, 3, 2, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, -1, 0, 1, 2, 3, 4, 5, 4, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 6, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 4, 3
OFFSET
0,3
COMMENTS
We start with a(0)=0 and a(1)=1, and then the sequence is extended according to these rules:
(1) |a(n+1) - a(n)| = 1 for any n>1,
(2) a(n+1) = a(n-1) iff n is prime.
Is this sequence ultimately positive or ultimately negative or will it change sign indefinitely?
From Ryan Bresler, Jan 04 2021: (Start)
This sequence will contain every integer on "at least one side" of the origin, i.e., it will not have a finite range.
Suppose this sequence has both a finite minimum, R1, and a finite maximum, R2. Since prime gaps become arbitrarily large, we will eventually reach a prime gap g, such that g > R2 - R1. We can see that this prime gap will cause at least one term of this sequence to be outside the interval [R1, R2]. This contradiction shows that all integers on at least one side of the origin will be terms of the sequence.
(End)
LINKS
FORMULA
a(prime(n)) = prime(1) + Sum_{k=1..n-1} A001223(k)*(-1)^k for any n > 0.
a(n+1) = A065358(n) + 1 for any n >= 0. - Rémy Sigrist, Feb 22 2018
EXAMPLE
a(2) is either a(1) + 1 = 2 or a(1) - 1 = 0.
As 1 is not prime, a(2) = a(1+1) != a(1-1) = 0.
Hence, a(2) = 2.
As 2 is prime, a(3) = a(2+1) = a(2-1) = a(1) = 1.
As 3 is prime, a(4) = a(3+1) = a(3-1) = a(2) = 2.
a(5) is either a(4)+1 = 3 or a(4)-1 = 1.
As 4 is not prime, a(5) = a(4+1) != a(4-1) = 1.
Hence, a(5) = 3.
The first terms can be visualized here (peaks correspond to odd-indexed primes, and valleys to even-indexed primes):
. /\ ...
. / \/
. /\ /
. / \/
. /\ /
. /\/ \/
. /
. 2 5 11 17
. 0 3 7 13 19
PROG
(PARI) y=0; slope=+1; for (x=0, 85, print1 (y ", "); if (isprime(x), slope = -slope); y+=slope)
CROSSREFS
Sequence in context: A005811 A008342 A277214 * A248218 A182110 A175328
KEYWORD
sign
AUTHOR
Rémy Sigrist, Nov 23 2016
STATUS
approved