The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182110 Irregular triangle read by rows: generating function counting rotationally distinct n X n tatami tilings with n monomers and exactly k vertical dimers. 2
 1, 1, 2, 1, 2, 3, 2, 1, 2, 3, 6, 4, 2, 2, 1, 2, 3, 6, 9, 8, 7, 6, 2, 2, 2, 1, 2, 3, 6, 9, 14, 15, 14, 14, 10, 8, 6, 4, 2, 2, 2, 1, 2, 3, 6, 9, 14, 22, 24, 25, 28, 25, 22, 19, 14, 10, 10, 8, 4, 4, 2, 2, 2, 1, 2, 3, 6, 9, 14, 22, 32, 37, 42, 49, 48, 49, 46, 38, 34, 30, 24, 20, 16, 12, 12, 10, 6, 4, 4, 2, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Monomer-dimer tatami tilings are arrangements of 1 X 1 monomers, 2 X 1 vertical dimers and 1 X 2 horizontal dimers on subsets of the integer grid, with the property that no four tiles meet at any point.  a(n) applies to tilings of this type which have monomers in their top corners. a(n) is the table T(2,0); T(3,0), T(3,1); T(4,0), T(4,1), T(4,2), T(4,3); T(5,0), T(5,1) ... where T(n,k) is the number of n X n tilings of the type described above with exactly k vertical dimers when n is even and exactly k horizontal dimers when n is odd. LINKS Alejandro Erickson, Table of n, a(n) for n = 0..9999 Alejandro Erickson, Table of coefficients of T_n(z) Alejandro Erickson, Frank Ruskey, Enumerating maximal tatami mat coverings of square grids with v vertical dominoes, arXiv:1304.0070 [math.CO], 2013. FORMULA G.f.: T_n(z) = Sum_{k>=0} T(n,k)*z^k is equal to T_n(z) = 2*Sum_{i=1..floor((n-1)/2)} S_{n-i-2}(z)*S_{i-1}(z)*z^{n-i-1} + (S_{floor((n-2)/2))^2, where S_k(z) = Product_{i=1..k} (1+z^i).  Note that deg(T_n(z)) = binomial(n-1,2). EXAMPLE T_5(z) = 1 + 2*z + 3*z^2 + 6*z^3 + 4*z^4 + 2*z^5 + 2*z^6; T(5,2) = 3, and the tilings are as follows: ._ _ _ _ _. |_|_ _| |_| |_ _| |_| | |_| |_| |_| | |_| |_| | |_|_|_|_|_| . ._ _ _ _ _. |_| |_ _|_| | |_| |_ _| |_| |_| |_| | |_| |_| | |_|_|_|_|_| . ._ _ _ _ _. |_| |_| |_| | |_| |_| | |_| |_| |_| |_|_| |_|_| |_ _|_|_ _| The triangle begins: 1 1,2 1,2,3,2 1,2,3,6,4,2,2 1,2,3,6,9,8,7,6,2,2,2 1,2,3,6,9,14,15,14,14,10,8,6,4,2,2,2 1,2,3,6,9,14,22,24,25,28,25,22,19,14,10,10,8,4,4,2,2,2 1,2,3,6,9,14,22,32,37,42,49,48,49,46,38,34,30,24,20,16,12,12,10,6,4,4,2,2,2 1,2,3,6,9,14,22,32,46,56,66,78,84,90,92,88,81,76,69,58,51,44,38,34,28,22,20,16,14,12,8,6,4,4,2,2,2 ... PROG (Sage) @cached_function def S(n, z):     out = 1     for i in [j+1 for j in range(n)]:         out = out*(1+z^i)     return out T = lambda n, z: 2*sum([S(n-i-2, z)*S(i-1, z)*z^(n-i-1) for i in range(1, floor((n-1)/2)+1)]) + S(floor((n-2)/2), z)^2 ZP. = PolynomialRing(ZZ) #call T(n, x) for the g.f. T_n(x) CROSSREFS S_k(z) is entry A053632. T_n(z) is a partition of A001787(n)/4. Tatami tilings with the same number of vertical and horizontal dimers is A182107. Sequence in context: A277214 A278603 A248218 * A175328 A338776 A198325 Adjacent sequences:  A182107 A182108 A182109 * A182111 A182112 A182113 KEYWORD nonn,tabf AUTHOR Alejandro Erickson, Apr 12 2012 EXTENSIONS Entry revised by N. J. A. Sloane, Jun 06 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 11 21:35 EDT 2021. Contains 343808 sequences. (Running on oeis4.)