login
A209981
Number of singular 2 X 2 matrices having all elements in {-n,...,n}.
14
1, 33, 129, 289, 545, 833, 1313, 1729, 2369, 3041, 3905, 4577, 5857, 6657, 7905, 9345, 10881, 11937, 13953, 15137, 17441, 19521, 21537, 22977, 26177, 28257, 30657, 33249, 36577, 38401, 42721, 44673, 48257, 51617, 54785, 58529, 63905
OFFSET
0,2
COMMENTS
See A210000 for a guide to related sequences.
FORMULA
a(n) = 8*A134506(n) + (4*n + 1)^2. - Andrew Howroyd, May 04 2020
EXAMPLE
Among the 33 matrices counted by a(1) are these (in compact notation):
(-1,-1,-1,-1), (0,0,0,0), (1,-1,-1,1), (1,1,1,1).
MATHEMATICA
a = -n; b = n; z1 = 40;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
Table[c[n, 0], {n, 0, z1}] (* A209981 *)
Table[c[n, 1], {n, 0, z1}] (* A209982 *)
%/4 (* A206258 *)
2 % (* A209983 *)
Table[c[n, 2], {n, 0, z1}] (* A209984 *)
%/4 (* A209985 *)
Table[c[n, 3], {n, 0, z1}] (* A209986 *)
%/8 (* A209987 *)
Table[c[n, 4], {n, 0, z1}] (* A209988 *)
%/4 (* A209989 *)
Table[c[n, 5], {n, 0, z1}] (* A209990 *)
%/8 (* A209997 *)
CROSSREFS
Cf. A210000.
Sequence in context: A010020 A007419 A158575 * A036546 A043502 A044365
KEYWORD
nonn
AUTHOR
Clark Kimberling, Mar 17 2012
STATUS
approved