login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211154
Number of 2 X 2 matrices having all terms in {-n,...,0,..,n} and even determinant.
3
1, 41, 457, 1345, 4481, 8521, 18985, 30017, 54721, 78121, 126281, 168961, 252097, 322505, 454441, 562561, 759425, 916777, 1197001, 1416641, 1800961, 2097481, 2608937, 2998465, 3662401, 4162601, 5006665, 5636737, 6690881, 7471561, 8768041, 9721601, 11294977, 12445225, 14332361, 15704641
OFFSET
0,2
COMMENTS
A211154(n) + A211155(n) = (2n+1)^4.
For a guide to related sequences, see A210000.
LINKS
FORMULA
From Chai Wah Wu, Nov 27 2016: (Start)
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) for n > 9.
G.f.: x*(-x^8 - 36*x^6 - 416*x^5 - 734*x^4 - 1472*x^3 - 724*x^2 - 416*x - 41)/((x - 1)^5*(x + 1)^4). (End)
MAPLE
seq((2*n+1)^4 - 2*n*(1+n)*(1+3*n+3*n^2-(1+2*n)*(-1)^n), n=1..20); # Mark van Hoeij, May 13 2013
MATHEMATICA
a = -n; b = n; z1 = 20;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
u[n_] := Sum[c[n, 2 k], {k, -2*n^2, 2*n^2}]
v[n_] := Sum[c[n, 2 k - 1], {k, -2*n^2, 2*n^2}]
Table[u[n], {n, 1, z1}] (* A211154 *)
Table[v[n], {n, 1, z1}] (* A211155 *)
PROG
(PARI) a(n)=(2*n+1)^4 - 2*n*(1+n)*(1+3*n+3*n^2-(1+2*n)*(-1)^n); \\ Joerg Arndt, May 14 2013
CROSSREFS
Sequence in context: A173768 A061643 A209842 * A103735 A177491 A269087
KEYWORD
nonn
AUTHOR
Clark Kimberling, Apr 05 2012
EXTENSIONS
More terms from Joerg Arndt, May 14 2013
a(0)=1 prepended by Andrew Howroyd, May 05 2020
STATUS
approved