login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of unimodular 2 X 2 matrices having all terms in {0,1,...,n}.
101

%I #33 Jan 12 2017 15:58:59

%S 0,6,14,30,46,78,94,142,174,222,254,334,366,462,510,574,638,766,814,

%T 958,1022,1118,1198,1374,1438,1598,1694,1838,1934,2158,2222,2462,2590,

%U 2750,2878,3070,3166,3454,3598,3790,3918,4238,4334,4670,4830

%N Number of unimodular 2 X 2 matrices having all terms in {0,1,...,n}.

%C a(n) is the number of 2 X 2 matrices having all terms in {0,1,...,n} and inverses with all terms integers.

%C Most sequences in the following guide count 2 X 2 matrices having all terms contained in the domain shown in column 2 and determinant d or permanent p or sum s of terms as indicated in column 3.

%C A059306 ... {0,1,...,n} ..... d=0

%C A171503 ... {0,1,...,n} ..... d=1

%C A210000 ... {0,1,...,n} .... |d|=1

%C A209973 ... {0,1,...,n} ..... d=2

%C A209975 ... {0,1,...,n} ..... d=3

%C A209976 ... {0,1,...,n} ..... d=4

%C A209977 ... {0,1,...,n} ..... d=5

%C A210282 ... {0,1,...,n} ..... d=n

%C A210283 ... {0,1,...,n} ..... d=n-1

%C A210284 ... {0,1,...,n} ..... d=n+1

%C A210285 ... {0,1,...,n} ..... d=floor(n/2)

%C A210286 ... {0,1,...,n} ..... d=trace

%C A280588 ... {0,1,...,n} ..... d=s

%C A106634 ... {0,1,...,n} ..... p=n

%C A210288 ... {0,1,...,n} ..... p=trace

%C A210289 ... {0,1,...,n} ..... p=(trace)^2

%C A280934 ... {0,1,...,n} ..... p=s

%C A210290 ... {0,1,...,n} ..... d>=0

%C A183761 ... {0,1,...,n} ..... d>0

%C A210291 ... {0,1,...,n} ..... d>n

%C A210366 ... {0,1,...,n} ..... d>=n

%C A210367 ... {0,1,...,n} ..... d>=2n

%C A210368 ... {0,1,...,n} ..... d>=3n

%C A210369 ... {0,1,...,n} ..... d is even

%C A210370 ... {0,1,...,n} ..... d is odd

%C A210371 ... {0,1,...,n} ..... d is even and >=0

%C A210372 ... {0,1,...,n} ..... d is even and >0

%C A210373 ... {0,1,...,n} ..... d is odd and >0

%C A210374 ... {0,1,...,n} ..... s=n+2

%C A210375 ... {0,1,...,n} ..... s=n+3

%C A210376 ... {0,1,...,n} ..... s=n+4

%C A210377 ... {0,1,...,n} ..... s=n+5

%C A210378 ... {0,1,...,n} ..... t is even

%C A210379 ... {0,1,...,n} ..... t is odd

%C A211031 ... {0,1,...,n} ..... d is in [-n,n]

%C A211032 ... {0,1,...,n} ..... d is in (-n,n)

%C A211033 ... {0,1,...,n} ..... d=0 (mod 3)

%C A211034 ... {0,1,...,n} ..... d=1 (mod 3)

%C A209974 = (A209973)/4

%C A134506 ... {1,2,...,n} ..... d=0

%C A196227 ... {1,2,...,n} ..... d=1

%C A209979 ... {1,2,...,n} .... |d|=1

%C A197168 ... {1,2,...,n} ..... d=2

%C A210001 ... {1,2,...,n} ..... d=3

%C A210002 ... {1,2,...,n} ..... d=4

%C A210027 ... {1,2,...,n} ..... d=5

%C A209978 = (A196227)/2

%C A209980 = (A197168)/2

%C A211053 ... {1,2,...,n} ..... d=n

%C A211054 ... {1,2,...,n} ..... d=n-1

%C A211055 ... {1,2,...,n} ..... d=n+1

%C A055507 ... {1,2,...,n} ..... p=n

%C A211057 ... {1,2,...,n} ..... d is in [0,n]

%C A211058 ... {1,2,...,n} ..... d>=0

%C A211059 ... {1,2,...,n} ..... d>0

%C A211060 ... {1,2,...,n} ..... d>n

%C A211061 ... {1,2,...,n} ..... d>=n

%C A211062 ... {1,2,...,n} ..... d>=2n

%C A211063 ... {1,2,...,n} ..... d>=3n

%C A211064 ... {1,2,...,n} ..... d is even

%C A211065 ... {1,2,...,n} ..... d is odd

%C A211066 ... {1,2,...,n} ..... d is even and >=0

%C A211067 ... {1,2,...,n} ..... d is even and >0

%C A211068 ... {1,2,...,n} ..... d is odd and >0

%C A209981 ... {-n,....,n} ..... d=0

%C A209982 ... {-n,....,n} ..... d=1

%C A209984 ... {-n,....,n} ..... d=2

%C A209986 ... {-n,....,n} ..... d=3

%C A209988 ... {-n,....,n} ..... d=4

%C A209990 ... {-n,....,n} ..... d=5

%C A211140 ... {-n,....,n} ..... d=n

%C A211141 ... {-n,....,n} ..... d=n-1

%C A211142 ... {-n,....,n} ..... d=n+1

%C A211143 ... {-n,....,n} ..... d=n^2

%C A211140 ... {-n,....,n} ..... p=n

%C A211145 ... {-n,....,n} ..... p=trace

%C A211146 ... {-n,....,n} ..... d in [0,n]

%C A211147 ... {-n,....,n} ..... d>=0

%C A211148 ... {-n,....,n} ..... d>0

%C A211149 ... {-n,....,n} ..... d<0 or d>0

%C A211150 ... {-n,....,n} ..... d>n

%C A211151 ... {-n,....,n} ..... d>=n

%C A211152 ... {-n,....,n} ..... d>=2n

%C A211153 ... {-n,....,n} ..... d>=3n

%C A211154 ... {-n,....,n} ..... d is even

%C A211155 ... {-n,....,n} ..... d is odd

%C A211156 ... {-n,....,n} ..... d is even and >=0

%C A211157 ... {-n,....,n} ..... d is even and >0

%C A211158 ... {-n,....,n} ..... d is odd and >0

%F a(n) = 2*A171503(n).

%e a(2)=6 counts these matrices (using reduced matrix notation):

%e (1,0,0,1), determinant = 1, inverse = (1,0,0,1)

%e (1,0,1,1), determinant = 1, inverse = (1,0,-1,1)

%e (1,1,0,1), determinant = 1, inverse = (1,-1,0,1)

%e (0,1,1,0), determinant = -1, inverse = (0,1,1,0)

%e (0,1,1,1), determinant = -1, inverse = (-1,1,1,0)

%e (1,1,1,0), determinant = -1, inverse = (0,1,1,-1)

%t a = 0; b = n; z1 = 50;

%t t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]

%t c[n_, k_] := c[n, k] = Count[t[n], k]

%t Table[c[n, 0], {n, 0, z1}] (* A059306 *)

%t Table[c[n, 1], {n, 0, z1}] (* A171503 *)

%t 2 % (* A210000 *)

%t Table[c[n, 2], {n, 0, z1}] (* A209973 *)

%t %/4 (* A209974 *)

%t Table[c[n, 3], {n, 0, z1}] (* A209975 *)

%t Table[c[n, 4], {n, 0, z1}] (* A209976 *)

%t Table[c[n, 5], {n, 0, z1}] (* A209977 *)

%Y Cf. A171503.

%Y See also the very useful list of cross-references in the Comments section.

%K nonn

%O 0,2

%A _Clark Kimberling_, Mar 16 2012

%E A209982 added to list in comment by _Chai Wah Wu_, Nov 27 2016