login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209998
Triangle of coefficients of polynomials v(n,x) jointly generated with A209996; see the Formula section.
3
1, 2, 3, 2, 8, 9, 2, 10, 30, 27, 2, 10, 46, 108, 81, 2, 10, 50, 198, 378, 243, 2, 10, 50, 242, 810, 1296, 729, 2, 10, 50, 250, 1122, 3186, 4374, 2187, 2, 10, 50, 250, 1234, 4986, 12150, 14580, 6561, 2, 10, 50, 250, 1250, 5946, 21330, 45198, 48114, 19683
OFFSET
1,2
COMMENTS
Row n starts 2, 2*5, 2*5^2,... ; ends with 3^(n-1).
Conjecture: penultimate term in row n is A199923(n).
Alternating row sums: A077925
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=x*u(n-1,x)+2x*v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
2...3
2...8....9
2...10...30...27
2...10...46...108...81
First three polynomials v(n,x): 1, 2 + 3x , 2 + 8x + 9x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209996 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A209998 *)
CROSSREFS
Sequence in context: A134347 A057761 A321477 * A349972 A163204 A364895
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 23 2012
EXTENSIONS
a(55) corrected by Georg Fischer, Sep 03 2021
STATUS
approved