Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Sep 03 2021 13:58:15
%S 1,2,3,2,8,9,2,10,30,27,2,10,46,108,81,2,10,50,198,378,243,2,10,50,
%T 242,810,1296,729,2,10,50,250,1122,3186,4374,2187,2,10,50,250,1234,
%U 4986,12150,14580,6561,2,10,50,250,1250,5946,21330,45198,48114,19683
%N Triangle of coefficients of polynomials v(n,x) jointly generated with A209996; see the Formula section.
%C Row n starts 2, 2*5, 2*5^2,... ; ends with 3^(n-1).
%C Conjecture: penultimate term in row n is A199923(n).
%C Alternating row sums: A077925
%C For a discussion and guide to related arrays, see A208510.
%F u(n,x)=x*u(n-1,x)+2x*v(n-1,x)+1,
%F v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1,
%F where u(1,x)=1, v(1,x)=1.
%e First five rows:
%e 1
%e 2...3
%e 2...8....9
%e 2...10...30...27
%e 2...10...46...108...81
%e First three polynomials v(n,x): 1, 2 + 3x , 2 + 8x + 9x^2.
%t u[1, x_] := 1; v[1, x_] := 1; z = 16;
%t u[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x] + 1;
%t v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x] + 1;
%t Table[Expand[u[n, x]], {n, 1, z/2}]
%t Table[Expand[v[n, x]], {n, 1, z/2}]
%t cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
%t TableForm[cu]
%t Flatten[%] (* A209996 *)
%t Table[Expand[v[n, x]], {n, 1, z}]
%t cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
%t TableForm[cv]
%t Flatten[%] (* A209998 *)
%Y Cf. A209996, A208510.
%K nonn,tabl
%O 1,2
%A _Clark Kimberling_, Mar 23 2012
%E a(55) corrected by _Georg Fischer_, Sep 03 2021