login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134067
Row sums of triangle A134066.
5
1, 6, 14, 30, 62, 126, 254, 510, 1022, 2046, 4094, 8190, 16382, 32766, 65534, 131070, 262142, 524286, 1048574, 2097150, 4194302, 8388606, 16777214, 33554430, 67108862, 134217726, 268435454, 536870910, 1073741822, 2147483646, 4294967294, 8589934590, 17179869182
OFFSET
0,2
COMMENTS
Essentially the same as A095121. - R. J. Mathar, Mar 28 2012
FORMULA
Binomial transform of (1, 5, 3, 5, 3, 5, ...).
From Colin Barker, Mar 13 2014: (Start)
a(n) = 2^(2+n) - 2 for n > 0.
a(n) = 3*a(n-1) - 2*a(n-2) for n > 0.
G.f.: -(2*x^2-3*x-1) / ((x-1)*(2*x-1)). (End)
E.g.f.: 2*exp(x)*(2*exp(x) - 1) - 1. - Stefano Spezia, May 07 2023
EXAMPLE
a(3) = 30 = sum of row 3 terms of triangle A134066: (2 + 12 + 12 + 4).
a(3) = 30 = (1, 3, 3, 1) dot (1, 5, 3, 5) = (1 + 15 + 9 + 5).
MATHEMATICA
Join[{1}, LinearRecurrence[{3, -2}, {6, 14}, 50]] (* Vladimir Joseph Stephan Orlovsky, Feb 23 2012 *)
PROG
(PARI) Vec(-(2*x^2-3*x-1)/((x-1)*(2*x-1)) + O(x^100)) \\ Colin Barker, Mar 13 2014
CROSSREFS
Sequence in context: A183023 A284246 A210000 * A350107 A024932 A273365
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Oct 06 2007
STATUS
approved