Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 May 08 2023 09:35:19
%S 1,6,14,30,62,126,254,510,1022,2046,4094,8190,16382,32766,65534,
%T 131070,262142,524286,1048574,2097150,4194302,8388606,16777214,
%U 33554430,67108862,134217726,268435454,536870910,1073741822,2147483646,4294967294,8589934590,17179869182
%N Row sums of triangle A134066.
%C Essentially the same as A095121. - _R. J. Mathar_, Mar 28 2012
%H Vincenzo Librandi, <a href="/A134067/b134067.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2).
%F Binomial transform of (1, 5, 3, 5, 3, 5, ...).
%F From _Colin Barker_, Mar 13 2014: (Start)
%F a(n) = 2^(2+n) - 2 for n > 0.
%F a(n) = 3*a(n-1) - 2*a(n-2) for n > 0.
%F G.f.: -(2*x^2-3*x-1) / ((x-1)*(2*x-1)). (End)
%F E.g.f.: 2*exp(x)*(2*exp(x) - 1) - 1. - _Stefano Spezia_, May 07 2023
%e a(3) = 30 = sum of row 3 terms of triangle A134066: (2 + 12 + 12 + 4).
%e a(3) = 30 = (1, 3, 3, 1) dot (1, 5, 3, 5) = (1 + 15 + 9 + 5).
%t Join[{1}, LinearRecurrence[{3, -2}, {6, 14}, 50]] (* _Vladimir Joseph Stephan Orlovsky_, Feb 23 2012 *)
%o (PARI) Vec(-(2*x^2-3*x-1)/((x-1)*(2*x-1)) + O(x^100)) \\ _Colin Barker_, Mar 13 2014
%Y Cf. A095121, A134066.
%K nonn,easy
%O 0,2
%A _Gary W. Adamson_, Oct 06 2007