login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324025
Digits of one of the two 5-adic integers sqrt(6) that is related to A324023.
9
1, 3, 0, 4, 2, 1, 2, 3, 1, 3, 3, 0, 3, 3, 2, 3, 2, 2, 2, 4, 3, 3, 1, 4, 0, 1, 2, 0, 0, 0, 3, 3, 1, 4, 1, 0, 1, 2, 4, 1, 4, 1, 1, 0, 2, 4, 4, 3, 0, 2, 3, 4, 1, 1, 4, 3, 4, 2, 4, 2, 1, 1, 2, 4, 4, 3, 2, 3, 1, 1, 0, 1, 4, 2, 3, 4, 4, 4, 4, 0, 3, 3, 1, 2, 3, 2, 3, 1
OFFSET
0,2
COMMENTS
This square root of 6 in the 5-adic field ends with digit 1. The other, A324026, ends with digit 4.
FORMULA
a(n) = (A324023(n+1) - A324023(n))/5^n.
For n > 0, a(n) = 4 - A324026(n).
Equals A210850*A324030 = A210851*A324029, where each A-number represents a 5-adic number.
EXAMPLE
The solution to x^2 == 6 (mod 5^4) such that x == 1 (mod 5) is x == 516 (mod 5^4), and 516 is written as 4031 in quinary, so the first four terms are 1, 3, 0 and 4.
PROG
(PARI) a(n) = truncate(sqrt(6+O(5^(n+1))))\5^n
CROSSREFS
Digits of 5-adic square roots:
A324029, A324030 (sqrt(-6));
A269591, A269592 (sqrt(-4));
A210850, A210851 (sqrt(-1));
this sequence, A324026 (sqrt(6)).
Sequence in context: A351190 A131486 A127445 * A081170 A201291 A272192
KEYWORD
nonn,base
AUTHOR
Jianing Song, Sep 07 2019
STATUS
approved