The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A269592 Digits of one of the two 5-adic integers sqrt(-4). Here the ones related to A269590. 15
 4, 2, 4, 2, 1, 4, 0, 2, 1, 1, 0, 0, 1, 3, 3, 1, 0, 4, 1, 3, 2, 4, 1, 3, 3, 4, 3, 3, 3, 3, 2, 1, 3, 3, 3, 3, 0, 1, 2, 2, 1, 2, 0, 0, 4, 1, 3, 0, 4, 1, 1, 3, 4, 3, 1, 1, 2, 1, 1, 1, 0, 0, 1, 3, 1, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS This is the scaled first difference sequence of A269590. The digits of the other 5-adic integer sqrt(-4), are given in A269591. See also A268922 for the two 5-adic numbers -u and u. a(n) is the unique solution of the linear congruence 2*A269590(n)*a(n) + A269594(n) == 0 (mod 5), n>=1. Therefore only the values 0, 1, 2, 3 and 4 appear. See the Nagell reference given in A268922, eq. (6) on p. 86, adapted to this case. a(0) = 4 follows from the formula given below. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 BCMATH Congruence Programs, Finding a p-adic square root of a quadratic residue (mod p), p an odd prime.. FORMULA a(n) = (b(n+1) - b(n))/5^n, n>=0, with b(n) = A269590(n), n >= 0. a(n) = -A269594(n)*(2*A269590(n))^3 (mod 5), n >= 1. Solution of the linear congruence see, e.g., Nagell, Theorem 38 pp. 77-78. A269590(n+1) = sum(a(k)*5^k, k=0..n), n>=0. a(n) = 4 - A269591(n) if n > 0 and a(0) = 5 - A269591(0) = 5-4 = 1. - Michel Marcus, Mar 31 2016 EXAMPLE a(4) = -212*(2*364)^3 (mod 5) = -2*(2*(-1))^3 (mod 5) = 1. PROG (PARI) a(n) = truncate(-sqrt(-4+O(5^(n+1))))\5^n; \\ Michel Marcus, Mar 04 2016 CROSSREFS Cf. A269590, A269591 (companion), A269594. Sequence in context: A179950 A016514 A224360 * A105256 A064127 A178253 Adjacent sequences:  A269589 A269590 A269591 * A269593 A269594 A269595 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Mar 02 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 03:26 EDT 2021. Contains 347623 sequences. (Running on oeis4.)