login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224360
Triangle read by rows: T(n,k) = -1 + length of the Collatz sequence of -(n-k)/(2k+1) for n >= 1 and k >= 0.
2
0, 1, 1, 4, 2, 4, 2, 0, 5, 9, 4, 3, 7, 10, 4, 5, 3, 6, 11, 5, 8, 4, 1, 0, 11, 1, 9, 14, 3, 6, 8, 13, 6, 8, 15, 4, 11, 4, 9, 12, 3, 10, 5, 5, 17, 4, 4, 7, 0, 2, 11, 16, 4, 18, 36, 6, 4, 14, 12, 4, 9, 16, 6, 9, 37, 13, 6, 5, 1, 16, 7, 13, 6, 1, 19, 16, 14, 7, 9
OFFSET
1,4
COMMENTS
This sequence is an extension of A210516 with negative values.
We consider the triangle T(n,k) = -(n-k)/(2k+1) for n = 1,2,... and k = 0..n-1.
The example shown below gives a general idea of this regular triangle. This contains all negative fractions whose denominator is odd and all integers. Now, from T(n,k) we could introduce a 3D triangle in order to produce a complete Collatz sequence starting from each rational T(n,k).
The initial triangle T(n,k) begins
-1,
-2, -1/3;
-3, -2/3, -1/5;
-4, -3/3, -2/5, -1/7;
-5, -4/3, -3/5, -2/7, -1/9;
-6, -5/3, -4/5, -3/7, -2/9, -1/11;
...
EXAMPLE
The triangle of lengths begins
1;
2, 2;
5, 3, 5;
3, 1, 6, 10;
5, 4, 8, 11, 5;
...
Individual numbers have the following Collatz sequences (the first term is not counted):
[-1] => [1] because: -1 -> -1 with 0 iterations;
[-2 -1/3] => [1, 1] because: -2 -> -1 => 1 iteration; -1/3 -> 0 => 1 iteration;
[-3 -2/3 -1/5] => [4, 2, 4] because: -3 -> -8 -> -4 -> -2 -> -1 => 4 iterations; -2/3 -> -1/3 -> 0 => 2 iterations; -1/5 -> 2/5 -> 1/5 -> 8/5 -> 4/5 => 4 iterations.
MATHEMATICA
Collatz2[n_] := Module[{lst = NestWhileList[If[EvenQ[Numerator[#]], #/2, 3 # + 1] &, n, Unequal, All]}, If[lst[[-1]] == -1, lst = Drop[lst, -2], If[lst[[-1]] == 2, lst = Drop[lst, -2], If[lst[[-1]] == 4, lst = Drop[lst, -1], If[MemberQ[Rest[lst], lst[[-1]]], lst = Drop[lst, -1]]]]]]; t = Table[s = Collatz2[-(n - k)/(2*k + 1)]; Length[s]-1 , {n, 13}, {k, 0, n - 1}]; Flatten[t] (* program from T. D. Noe, adapted for this sequence - see A210516 *).
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Michel Lagneau, Apr 04 2013
EXTENSIONS
Better definition from Michel Marcus, Sep 14 2017
STATUS
approved