login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A105256
Sign doubling substitution of the Rauzy: 1->{1,2},2->{1,3},3->1 using a digraphy symmetry to the bi-Kenyon version (not a triangular nest of nests, but a straight level 5).
1
1, 4, 2, 4, 2, 1, 5, 1, 3, 4, 2, 1, 5, 1, 3, 1, 5, 1, 3, 4, 2, 4, 6, 4, 2, 1, 4, 2, 1, 5, 1, 3, 1, 5, 1, 3, 4, 2, 4, 6, 4, 2, 1, 1, 5, 1, 3, 4, 2, 4, 6, 4, 2, 1, 4, 2, 4, 6, 4, 2, 1, 1, 5, 1, 3, 1, 5, 4, 1, 5, 1, 3, 4, 2, 4, 2, 1, 5, 1, 3, 1, 5, 1, 3, 4, 2, 4, 6, 4, 2, 1, 1, 5, 1, 3, 4, 2, 4, 6, 4, 2, 1, 4, 2, 4
OFFSET
0,2
COMMENTS
The French/ Siegel Rauzy substitution is: 1->{1,2} 2->{1,3} 3->{1} This is digraph symmetrical to the Kenyon type substitution : 1->{2} 2->{3} 3->{3,2,1} Looking at the digraph of: 1->{2} 2->{3} 3->{6,2,1} 4->{5} 5->{6} 6->{3,5,4} I get the same linked two triangle structure for this six-symbol substitution. The problem with the digraph approach is that the order is not specific as it is in actual substitutions.
REFERENCES
"The Construction of Self-Similar Tilings", Richard Kenyon, Section 6
FORMULA
1->{4, 2} 2->{1, 3} 3->{1} 4->{1, 5} 5->{4, 6} 6->{4}
MATHEMATICA
s[1] = {4, 2}; s[2] = {1, 3}; s[3] = {1}; s[4] = {1, 5}; s[5] = {4, 6}; s[6] = {4}; t[a_] := Join[a, Flatten[s /@ a]]; p[0] = {1}; p[1] = t[{1}]; p[n_] := t[p[n - 1]] aa = p[5]
CROSSREFS
Sequence in context: A224360 A375087 A269592 * A064127 A178253 A209272
KEYWORD
nonn,uned
AUTHOR
Roger L. Bagula, Apr 14 2005
STATUS
approved