OFFSET
0,2
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (17,-136,680,-2380,6188,-12376,19448,-24310,24310,-19448,12376,-6188,2380,-680,136,-17,1).
FORMULA
G.f.: -(210*x^6+1512*x^5+3150*x^4+2400*x^3+675*x^2+60*x+1)/(x-1)^17. - Colin Barker, Jan 21 2013
From Amiram Eldar, Sep 01 2022: (Start)
Sum_{n>=0} 1/a(n) = 20020*Pi^2 - 1493768807/7560.
Sum_{n>=0} (-1)^n/a(n) = 131072*log(2)/21 - 100*Pi^2 - 88332653/26460. (End)
EXAMPLE
a(0): C(0+6,0)*C(0+10,0) = C(6,0)*C(10,0) = 1*1 = 1;
a(10): C(10+6,10)*C(10+10,10) = C(16,10)*(20,10) = 8008*184756 = 1479526048.
MATHEMATICA
f[n_] := Binomial[n + 6, n]Binomial[n + 10, n]; Table[ f[n], {n, 0, 20}] (* Robert G. Wilson v, Apr 20 2005 *)
PROG
(Magma) [Binomial(n+6, n)*Binomial(n+10, n): n in [0..30]]; // Vincenzo Librandi, Jul 31 2015
(Python)
A105253_list, m = [], [8008, -22022, 23023, -11297, 2563, -209] + [1]*11
for _ in range(10**2):
A105253_list.append(m[-1])
for i in range(16):
m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Zerinvary Lajos, Apr 14 2005
EXTENSIONS
More terms from Robert G. Wilson v, Apr 20 2005
STATUS
approved