OFFSET
0,2
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
G.f.: -(35*x^3+63*x^2+21*x+1)/(x-1)^11. - Colin Barker, Jan 21 2013
a(n) = 11*a(n-1)-55*a(n-2)+165*a(n-3)-330*a(n-4)+462*a(n-5)-462*a(n-6)+330*a(n-7)-165*a(n-8)+55*a(n-9)-11*a(n-10)+a(n-11). - Wesley Ivan Hurt, May 24 2021
From Amiram Eldar, Sep 01 2022: (Start)
Sum_{n>=0} 1/a(n) = 98*Pi^2 - 72464/75.
Sum_{n>=0} (-1)^n/a(n) = 7*Pi^2 + 1792*log(2)/5 - 15827/50. (End)
EXAMPLE
a(0): C(0+3,0)*C(0+7,0) = C(3,0)*C(7,0) = 1*1 = 1;
a(10): C(10+3,10)*C(10+7,10) = C(13,10)*(17,10) = 286*19448 = 5562128.
MATHEMATICA
f[n_] := Binomial[n + 3, n]Binomial[n + 7, n]; Table[ f[n], {n, 0, 23}] (* Robert G. Wilson v, Apr 20 2005 *)
PROG
(Magma) [Binomial(n+3, n)*Binomial(n+7, n): n in [0..30]]; // Vincenzo Librandi, Jul 31 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Zerinvary Lajos, Apr 14 2005
EXTENSIONS
More terms from Robert G. Wilson v, Apr 20 2005
STATUS
approved