login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105249 a(n) = binomial(n+2,n)*binomial(n+6,n). 0
1, 21, 168, 840, 3150, 9702, 25872, 61776, 135135, 275275, 528528, 965328, 1689324, 2848860, 4651200, 7379904, 11415789, 17261937, 25573240, 37191000, 53183130, 74890530, 103980240, 142506000, 192976875, 258434631, 342540576, 449672608 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..27.

Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).

FORMULA

a(0)=1, a(1)=21, a(2)=168, a(3)=840, a(4)=3150, a(5)=9702, a(6)=25872, a(7)=61776, a(8)=135135, a(n)=9*a(n-1)-36*a(n-2)+84*a(n-3)- 126*a(n-4)+ 126*a(n-5)-84*a(n-6)+36*a(n-7)-9*a(n-8)+a(n-9). - Harvey P. Dale, Oct 08 2012

G.f.: -(15*x^2+12*x+1)/(x-1)^9. - Colin Barker, Jan 21 2013

EXAMPLE

a(0): C(0+2,0)*C(0+6,0) = C(2,0)*C(6,0) = 1*1 = 1;

a(10): C(10+2,10)*C(10+6,10) = C(12,10)*C(16,10) = 66*8008 = 528528.

MATHEMATICA

f[n_] := Binomial[n + 2, n]Binomial[n + 6, n]; Table[ f[n], {n, 0, 27}] (* Robert G. Wilson v, Apr 20 2005 *)

LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {1, 21, 168, 840, 3150, 9702, 25872, 61776, 135135}, 30] (* Harvey P. Dale, Oct 08 2012 *)

PROG

(MAGMA) [Binomial(n+2, n)*Binomial(n+6, n): n in [0..30]]; // Vincenzo Librandi, Jul 31 2015

CROSSREFS

Cf. A062264.

Sequence in context: A022681 A266733 A107970 * A278992 A041848 A125358

Adjacent sequences:  A105246 A105247 A105248 * A105250 A105251 A105252

KEYWORD

easy,nonn

AUTHOR

Zerinvary Lajos, Apr 14 2005

EXTENSIONS

More terms from Robert G. Wilson v, Apr 20 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 7 15:56 EDT 2020. Contains 333306 sequences. (Running on oeis4.)