OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
a(0)=1, a(1)=21, a(2)=168, a(3)=840, a(4)=3150, a(5)=9702, a(6)=25872, a(7)=61776, a(8)=135135, a(n)=9*a(n-1)-36*a(n-2)+84*a(n-3)- 126*a(n-4)+ 126*a(n-5)-84*a(n-6)+36*a(n-7)-9*a(n-8)+a(n-9). - Harvey P. Dale, Oct 08 2012
G.f.: -(15*x^2+12*x+1)/(x-1)^9. - Colin Barker, Jan 21 2013
From Amiram Eldar, Sep 04 2022: (Start)
Sum_{n>=0} 1/a(n) = 12*Pi^2 - 5869/50.
Sum_{n>=0} (-1)^n/a(n) = 256*log(2)/5 - 4*Pi^2 + 371/75. (End)
EXAMPLE
a(0): C(0+2,0)*C(0+6,0) = C(2,0)*C(6,0) = 1*1 = 1;
a(10): C(10+2,10)*C(10+6,10) = C(12,10)*C(16,10) = 66*8008 = 528528.
MATHEMATICA
f[n_] := Binomial[n + 2, n]Binomial[n + 6, n]; Table[ f[n], {n, 0, 27}] (* Robert G. Wilson v, Apr 20 2005 *)
LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {1, 21, 168, 840, 3150, 9702, 25872, 61776, 135135}, 30] (* Harvey P. Dale, Oct 08 2012 *)
PROG
(Magma) [Binomial(n+2, n)*Binomial(n+6, n): n in [0..30]]; // Vincenzo Librandi, Jul 31 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Zerinvary Lajos, Apr 14 2005
EXTENSIONS
More terms from Robert G. Wilson v, Apr 20 2005
STATUS
approved