login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105249
a(n) = binomial(n+2,n)*binomial(n+6,n).
0
1, 21, 168, 840, 3150, 9702, 25872, 61776, 135135, 275275, 528528, 965328, 1689324, 2848860, 4651200, 7379904, 11415789, 17261937, 25573240, 37191000, 53183130, 74890530, 103980240, 142506000, 192976875, 258434631, 342540576, 449672608, 585033240, 754769400
OFFSET
0,2
FORMULA
a(0)=1, a(1)=21, a(2)=168, a(3)=840, a(4)=3150, a(5)=9702, a(6)=25872, a(7)=61776, a(8)=135135, a(n)=9*a(n-1)-36*a(n-2)+84*a(n-3)- 126*a(n-4)+ 126*a(n-5)-84*a(n-6)+36*a(n-7)-9*a(n-8)+a(n-9). - Harvey P. Dale, Oct 08 2012
G.f.: -(15*x^2+12*x+1)/(x-1)^9. - Colin Barker, Jan 21 2013
From Amiram Eldar, Sep 04 2022: (Start)
Sum_{n>=0} 1/a(n) = 12*Pi^2 - 5869/50.
Sum_{n>=0} (-1)^n/a(n) = 256*log(2)/5 - 4*Pi^2 + 371/75. (End)
EXAMPLE
a(0): C(0+2,0)*C(0+6,0) = C(2,0)*C(6,0) = 1*1 = 1;
a(10): C(10+2,10)*C(10+6,10) = C(12,10)*C(16,10) = 66*8008 = 528528.
MATHEMATICA
f[n_] := Binomial[n + 2, n]Binomial[n + 6, n]; Table[ f[n], {n, 0, 27}] (* Robert G. Wilson v, Apr 20 2005 *)
LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {1, 21, 168, 840, 3150, 9702, 25872, 61776, 135135}, 30] (* Harvey P. Dale, Oct 08 2012 *)
PROG
(Magma) [Binomial(n+2, n)*Binomial(n+6, n): n in [0..30]]; // Vincenzo Librandi, Jul 31 2015
CROSSREFS
Cf. A062264.
Sequence in context: A022681 A266733 A107970 * A278992 A358930 A041848
KEYWORD
easy,nonn
AUTHOR
Zerinvary Lajos, Apr 14 2005
EXTENSIONS
More terms from Robert G. Wilson v, Apr 20 2005
STATUS
approved