The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A105249 a(n) = binomial(n+2,n)*binomial(n+6,n). 0
 1, 21, 168, 840, 3150, 9702, 25872, 61776, 135135, 275275, 528528, 965328, 1689324, 2848860, 4651200, 7379904, 11415789, 17261937, 25573240, 37191000, 53183130, 74890530, 103980240, 142506000, 192976875, 258434631, 342540576, 449672608, 585033240, 754769400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Table of n, a(n) for n=0..29. Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1). FORMULA a(0)=1, a(1)=21, a(2)=168, a(3)=840, a(4)=3150, a(5)=9702, a(6)=25872, a(7)=61776, a(8)=135135, a(n)=9*a(n-1)-36*a(n-2)+84*a(n-3)- 126*a(n-4)+ 126*a(n-5)-84*a(n-6)+36*a(n-7)-9*a(n-8)+a(n-9). - Harvey P. Dale, Oct 08 2012 G.f.: -(15*x^2+12*x+1)/(x-1)^9. - Colin Barker, Jan 21 2013 From Amiram Eldar, Sep 04 2022: (Start) Sum_{n>=0} 1/a(n) = 12*Pi^2 - 5869/50. Sum_{n>=0} (-1)^n/a(n) = 256*log(2)/5 - 4*Pi^2 + 371/75. (End) EXAMPLE a(0): C(0+2,0)*C(0+6,0) = C(2,0)*C(6,0) = 1*1 = 1; a(10): C(10+2,10)*C(10+6,10) = C(12,10)*C(16,10) = 66*8008 = 528528. MATHEMATICA f[n_] := Binomial[n + 2, n]Binomial[n + 6, n]; Table[ f[n], {n, 0, 27}] (* Robert G. Wilson v, Apr 20 2005 *) LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {1, 21, 168, 840, 3150, 9702, 25872, 61776, 135135}, 30] (* Harvey P. Dale, Oct 08 2012 *) PROG (Magma) [Binomial(n+2, n)*Binomial(n+6, n): n in [0..30]]; // Vincenzo Librandi, Jul 31 2015 CROSSREFS Cf. A062264. Sequence in context: A022681 A266733 A107970 * A278992 A358930 A041848 Adjacent sequences: A105246 A105247 A105248 * A105250 A105251 A105252 KEYWORD easy,nonn AUTHOR Zerinvary Lajos, Apr 14 2005 EXTENSIONS More terms from Robert G. Wilson v, Apr 20 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 21:08 EST 2023. Contains 367565 sequences. (Running on oeis4.)