login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A266733 a(n) = 21*binomial(n+6,7). 2
0, 21, 168, 756, 2520, 6930, 16632, 36036, 72072, 135135, 240240, 408408, 668304, 1058148, 1627920, 2441880, 3581424, 5148297, 7268184, 10094700, 13813800, 18648630, 24864840, 32776380, 42751800, 55221075, 70682976, 89713008, 112971936, 141214920, 175301280 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Total number of pips on a set of hexominoes (6-celled linear dominoes) with up to n pips in each cell.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

S. Butler, P. Karasik, A note on nested sums, J. Int. Seq. 13 (2010), 10.4.4, p=6 in the last equation on page 3.

Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).

FORMULA

a(n) = 21*A000580(n+6).

From Colin Barker, Jan 08 2016: (Start)

a(n) = n*(1+n)*(2+n)*(3+n)*(4+n)*(5+n)*(6+n)/240.

a(n) = 8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)-28*a(n-6)+8*a(n-7)-a(n-8) for n>7.

G.f.: 21*x / (1-x)^8.

(End)

MATHEMATICA

Table[21 Binomial[n+6, 7], {n, 0, 40}] (* Harvey P. Dale, Jan 13 2021 *)

PROG

(PARI) a(n) = (n*(1+n)*(2+n)*(3+n)*(4+n)*(5+n)*(6+n))/240 \\ Colin Barker, Jan 08 2016

(PARI) concat(0, Vec(21*x/(1-x)^8 + O(x^40))) \\ Colin Barker, Jan 08 2016

CROSSREFS

Row 6 of array in A129533.

Sequence in context: A126993 A332944 A022681 * A107970 A105249 A278992

Adjacent sequences:  A266730 A266731 A266732 * A266734 A266735 A266736

KEYWORD

nonn,easy

AUTHOR

Alan Shore and N. J. A. Sloane, Jan 06 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 7 23:50 EDT 2022. Contains 355995 sequences. (Running on oeis4.)