login
A324030
Digits of one of the two 5-adic integers sqrt(-6) that is related to A324028.
7
3, 2, 3, 3, 2, 1, 2, 0, 1, 3, 4, 4, 3, 1, 3, 1, 0, 2, 1, 2, 1, 2, 0, 0, 2, 1, 1, 4, 3, 3, 1, 3, 3, 3, 1, 3, 2, 1, 2, 1, 0, 3, 4, 2, 0, 0, 1, 0, 4, 1, 2, 4, 2, 4, 2, 4, 1, 2, 4, 4, 0, 2, 0, 0, 4, 0, 0, 0, 1, 3, 0, 2, 2, 0, 2, 4, 4, 4, 1, 4, 0, 1, 2, 0, 1, 1, 0, 4
OFFSET
0,1
COMMENTS
This square root of -6 in the 5-adic field ends with digit 3. The other, A324029, ends with digit 2.
FORMULA
a(n) = (A324028(n+1) - A324028(n))/5^n.
For n > 0, a(n) = 4 - A324029(n).
Equals A210850*A324025 = A210851*A324026, where each A-number represents a 5-adic number.
EXAMPLE
The solution to x^2 == -6 (mod 5^4) such that x == 3 (mod 5) is x == 463 (mod 5^4), and 463 is written as 3323 in quinary, so the first four terms are 3, 2, 3 and 3.
PROG
(PARI) a(n) = truncate(-sqrt(-6+O(5^(n+1))))\5^n
CROSSREFS
Digits of 5-adic square roots:
A324029, sequence (sqrt(-6));
A269591, A269592 (sqrt(-4));
A210850, A210851 (sqrt(-1));
A324025, A324026 (sqrt(6)).
Sequence in context: A370903 A153092 A165601 * A275821 A291674 A265157
KEYWORD
nonn,base
AUTHOR
Jianing Song, Sep 07 2019
STATUS
approved