The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A275821 Expansion of Product_{k>=1} (1 + x^(2*k) - x^(3*k)). 4
 1, 0, 1, -1, 1, 0, 1, -1, 1, -1, 3, -2, 3, -3, 2, -1, 4, -3, 4, -4, 7, -7, 7, -7, 9, -6, 11, -10, 10, -11, 15, -14, 18, -19, 21, -17, 24, -22, 26, -29, 35, -34, 42, -43, 43, -39, 52, -52, 59, -59, 74, -72, 79, -87, 93, -87, 107, -108, 118, -126, 149, -146 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,11 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 Vaclav Kotesovec, Graph - The asymptotic ratio (100000 terms) FORMULA a(n) ~ (-1)^n * c^(1/4) * exp(sqrt(c*n)) / (2^(3/2)*sqrt(Pi)*n^(3/4)), where c = Integral_{0..infinity} log(1 + 2*exp(-x) + exp(-2*x) - exp(-3*x)) dx = 1.522848148277623680909526566... MATHEMATICA nmax=100; CoefficientList[Series[Product[1+x^(2*k)-x^(3*k), {k, 1, nmax}], {x, 0, nmax}], x] RootReduce[QPochhammer[Root[-1 + # + #^3 &, 1], x] QPochhammer[Root[-1 + # + #^3 &, 2], x] QPochhammer[Root[-1 + # + #^3 &, 3], x] + O[x]^70][[3]] (* Vladimir Reshetnikov, Nov 20 2016 *) nmax = 100; p = ConstantArray[0, nmax + 1]; p[[1]] = 1; p[[3]] = 1; p[[4]] = -1; Do[Do[p[[j + 1]] = p[[j + 1]] + If[j < 2 k, 0, p[[j - 2 k + 1]]] - If[j < 3 k, 0, p[[j - 3 k + 1]]], {j, nmax, k, -1}]; , {k, 2, nmax}]; p (* Vaclav Kotesovec, May 06 2018 *) CROSSREFS Cf. A000726, A263401, A264905, A266686, A275820. Sequence in context: A153092 A165601 A324030 * A291674 A265157 A054263 Adjacent sequences:  A275818 A275819 A275820 * A275822 A275823 A275824 KEYWORD sign AUTHOR Vaclav Kotesovec, Nov 15 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 7 04:20 EDT 2020. Contains 333292 sequences. (Running on oeis4.)